Implement dependency injection in PydanticAI agents using RunContext and deps_type. Use when agents need database connections, API clients, user context, or any external resources.
This skill inherits all available tools. When active, it can use any tool Claude has access to.
Dependencies flow through RunContext:
from dataclasses import dataclass
from pydantic_ai import Agent, RunContext
@dataclass
class Deps:
db: DatabaseConn
api_client: HttpClient
user_id: int
agent = Agent(
'openai:gpt-4o',
deps_type=Deps, # Type for static analysis
)
@agent.tool
async def get_user_balance(ctx: RunContext[Deps]) -> float:
"""Get the current user's account balance."""
return await ctx.deps.db.get_balance(ctx.deps.user_id)
# At runtime, provide deps
result = await agent.run(
'What is my balance?',
deps=Deps(db=db_conn, api_client=client, user_id=123)
)
Use dataclasses or Pydantic models:
from dataclasses import dataclass
from pydantic import BaseModel
# Dataclass (recommended for simplicity)
@dataclass
class Deps:
db: DatabaseConnection
cache: CacheClient
user_context: UserContext
# Pydantic model (if you need validation)
class Deps(BaseModel):
api_key: str
endpoint: str
timeout: int = 30
In tools and instructions:
@agent.tool
async def query_database(ctx: RunContext[Deps], query: str) -> list[dict]:
"""Run a database query."""
return await ctx.deps.db.execute(query)
@agent.instructions
async def add_user_context(ctx: RunContext[Deps]) -> str:
user = await ctx.deps.db.get_user(ctx.deps.user_id)
return f"User name: {user.name}, Role: {user.role}"
@agent.system_prompt
def add_permissions(ctx: RunContext[Deps]) -> str:
return f"User has permissions: {ctx.deps.permissions}"
Full type checking with generics:
# Explicit agent type annotation
agent: Agent[Deps, OutputModel] = Agent(
'openai:gpt-4o',
deps_type=Deps,
output_type=OutputModel,
)
# Now these are type-checked:
# - ctx.deps in tools is typed as Deps
# - result.output is typed as OutputModel
# - agent.run() requires deps: Deps
When you don't need dependencies:
# Option 1: No deps_type (defaults to NoneType)
agent = Agent('openai:gpt-4o')
result = agent.run_sync('Hello') # No deps needed
# Option 2: Explicit None for type checker
agent: Agent[None, str] = Agent('openai:gpt-4o')
result = agent.run_sync('Hello', deps=None)
# In tool_plain, no context access
@agent.tool_plain
def simple_calc(a: int, b: int) -> int:
return a + b
from dataclasses import dataclass
from httpx import AsyncClient
from pydantic import BaseModel
from pydantic_ai import Agent, RunContext
@dataclass
class WeatherDeps:
client: AsyncClient
api_key: str
class WeatherReport(BaseModel):
location: str
temperature: float
conditions: str
agent: Agent[WeatherDeps, WeatherReport] = Agent(
'openai:gpt-4o',
deps_type=WeatherDeps,
output_type=WeatherReport,
instructions='You are a weather assistant.',
)
@agent.tool
async def get_weather(
ctx: RunContext[WeatherDeps],
city: str
) -> dict:
"""Fetch weather data for a city."""
response = await ctx.deps.client.get(
f'https://api.weather.com/{city}',
headers={'Authorization': ctx.deps.api_key}
)
return response.json()
async def main():
async with AsyncClient() as client:
deps = WeatherDeps(client=client, api_key='secret')
result = await agent.run('Weather in London?', deps=deps)
print(result.output.temperature)
from pydantic_ai.models.test import TestModel
# Create mock dependencies
mock_deps = Deps(
db=MockDatabase(),
api_client=MockClient(),
user_id=999
)
# Override model and deps for testing
with agent.override(model=TestModel(), deps=mock_deps):
result = agent.run_sync('Test prompt')
Agent[DepsType, OutputType] for full type safety