Register and implement PydanticAI tools with proper context handling, type annotations, and docstrings. Use when adding tool capabilities to agents, implementing function calling, or creating agent actions.
This skill inherits all available tools. When active, it can use any tool Claude has access to.
Two decorators based on whether you need context:
from pydantic_ai import Agent, RunContext
agent = Agent('openai:gpt-4o')
# @agent.tool - First param MUST be RunContext
@agent.tool
async def get_user_data(ctx: RunContext[MyDeps], user_id: int) -> str:
"""Get user data from database.
Args:
ctx: The run context with dependencies.
user_id: The user's ID.
"""
return await ctx.deps.db.get_user(user_id)
# @agent.tool_plain - NO context parameter allowed
@agent.tool_plain
def calculate_total(prices: list[float]) -> float:
"""Calculate total price.
Args:
prices: List of prices to sum.
"""
return sum(prices)
RunContext[DepsType]RunContext parameterGoogle style (default):
@agent.tool_plain
async def search(query: str, limit: int = 10) -> list[str]:
"""Search for items.
Args:
query: The search query.
limit: Maximum results to return.
"""
Sphinx style:
@agent.tool_plain(docstring_format='sphinx')
async def search(query: str) -> list[str]:
"""Search for items.
:param query: The search query.
"""
Tools can return various types:
# String (direct)
@agent.tool_plain
def get_info() -> str:
return "Some information"
# Pydantic model (serialized to JSON)
@agent.tool_plain
def get_user() -> User:
return User(name="John", age=30)
# Dict (serialized to JSON)
@agent.tool_plain
def get_data() -> dict[str, Any]:
return {"key": "value"}
# ToolReturn for custom content types
from pydantic_ai import ToolReturn, ImageUrl
@agent.tool_plain
def get_image() -> ToolReturn:
return ToolReturn(content=[ImageUrl(url="https://...")])
RunContext provides:
@agent.tool
async def my_tool(ctx: RunContext[MyDeps]) -> str:
# Dependencies
db = ctx.deps.db
api = ctx.deps.api_client
# Model info
model_name = ctx.model.model_name
# Usage tracking
tokens_used = ctx.usage.total_tokens
# Retry info
attempt = ctx.retry # Current retry attempt (0-based)
max_retries = ctx.max_retries
# Message history
messages = ctx.messages
return "result"
Dynamically modify tools per-request:
from pydantic_ai.tools import ToolDefinition
async def prepare_tools(
ctx: RunContext[MyDeps],
tool_defs: list[ToolDefinition]
) -> list[ToolDefinition]:
"""Filter or modify tools based on context."""
if ctx.deps.user_role != 'admin':
# Hide admin tools from non-admins
return [t for t in tool_defs if not t.name.startswith('admin_')]
return tool_defs
agent = Agent('openai:gpt-4o', prepare_tools=prepare_tools)
Group and compose tools:
from pydantic_ai import FunctionToolset, CombinedToolset
# Create a toolset
db_tools = FunctionToolset()
@db_tools.tool
def query_users(name: str) -> list[dict]:
"""Query users by name."""
...
@db_tools.tool
def update_user(id: int, data: dict) -> bool:
"""Update user data."""
...
# Use in agent
agent = Agent('openai:gpt-4o', toolsets=[db_tools])
# Combine toolsets
all_tools = CombinedToolset([db_tools, api_tools])
@agent.tool_plain
async def bad_tool(ctx: RunContext[MyDeps]) -> str: # ERROR!
...
@agent.tool
def bad_tool(user_id: int) -> str: # ERROR!
...
@agent.tool
def bad_tool(user_id: int, ctx: RunContext[MyDeps]) -> str: # ERROR!
...
Both work, but async is preferred for I/O:
# Async (preferred for I/O operations)
@agent.tool
async def fetch_data(ctx: RunContext[Deps]) -> str:
return await ctx.deps.client.get('/data')
# Sync (fine for CPU-bound operations)
@agent.tool_plain
def compute(x: int, y: int) -> int:
return x * y