Time series forecasting with ARIMA, Prophet, LSTM, and statistical methods. Activates for "time series", "forecasting", "predict future", "trend analysis", "seasonality", "ARIMA", "Prophet", "sales forecast", "demand prediction", "stock prediction". Handles trend decomposition, seasonality detection, multivariate forecasting, and confidence intervals with SpecWeave increment integration.
Inherits all available tools
Additional assets for this skill
This skill inherits all available tools. When active, it can use any tool Claude has access to.
Specialized forecasting pipelines for time-dependent data. Handles trend analysis, seasonality detection, and future predictions using statistical methods, machine learning, and deep learning approaches—all integrated with SpecWeave's increment workflow.
Standard ML assumptions violated:
Time series requirements:
ARIMA (AutoRegressive Integrated Moving Average):
from specweave import TimeSeriesForecaster
forecaster = TimeSeriesForecaster(
method="arima",
increment="0042"
)
# Automatic order selection (p, d, q)
forecaster.fit(train_data)
# Forecast next 30 periods
forecast = forecaster.predict(horizon=30)
# Generates:
# - Trend analysis
# - Seasonality decomposition
# - Autocorrelation plots (ACF, PACF)
# - Residual diagnostics
# - Forecast with confidence intervals
Seasonal Decomposition:
# Decompose into trend + seasonal + residual
decomposition = forecaster.decompose(
data=sales_data,
model='multiplicative', # Or 'additive'
period=12 # Monthly seasonality
)
# Creates:
# - Trend component plot
# - Seasonal component plot
# - Residual component plot
# - Strength of trend/seasonality metrics
Best for: Business time series (sales, website traffic, user growth)
from specweave import ProphetForecaster
forecaster = ProphetForecaster(increment="0042")
# Prophet handles:
# - Multiple seasonality (daily, weekly, yearly)
# - Holidays and events
# - Missing data
# - Outliers
forecaster.fit(
data=sales_data,
holidays=us_holidays, # Built-in holiday effects
seasonality_mode='multiplicative'
)
forecast = forecaster.predict(horizon=90)
# Generates:
# - Trend + seasonality + holiday components
# - Change point detection
# - Uncertainty intervals
# - Cross-validation results
Prophet with Custom Regressors:
# Add external variables (marketing spend, weather, etc.)
forecaster.add_regressor("marketing_spend")
forecaster.add_regressor("temperature")
# Prophet incorporates external factors into forecast
Best for: Complex patterns, multivariate forecasting, non-linear relationships
from specweave import LSTMForecaster
forecaster = LSTMForecaster(
lookback_window=30, # Use 30 past observations
horizon=7, # Predict 7 steps ahead
increment="0042"
)
# Automatically handles:
# - Sequence creation
# - Train/val/test split (temporal)
# - Scaling
# - Early stopping
forecaster.fit(
data=sensor_data,
epochs=100,
batch_size=32
)
forecast = forecaster.predict(horizon=7)
# Generates:
# - Training history plots
# - Validation metrics
# - Attention weights (if using attention)
# - Forecast uncertainty estimation
VAR (Vector AutoRegression) - Multiple related time series:
from specweave import VARForecaster
# Forecast multiple related series simultaneously
forecaster = VARForecaster(increment="0042")
# Example: Forecast sales across multiple stores
# Each store's sales affects others
forecaster.fit(data={
'store_1_sales': store1_data,
'store_2_sales': store2_data,
'store_3_sales': store3_data
})
forecast = forecaster.predict(horizon=30)
# Returns forecasts for all 3 stores
# ❌ WRONG: Random split (data leakage!)
X_train, X_test = train_test_split(data, test_size=0.2)
# ✅ CORRECT: Temporal split
split_date = "2024-01-01"
train = data[data.index < split_date]
test = data[data.index >= split_date]
# Or use last N periods as test
train = data[:-30] # All but last 30 observations
test = data[-30:] # Last 30 observations
from specweave import TimeSeriesAnalyzer
analyzer = TimeSeriesAnalyzer(increment="0042")
# Check stationarity (required for ARIMA)
stationarity = analyzer.check_stationarity(data)
if not stationarity['is_stationary']:
# Make stationary via differencing
data_diff = analyzer.difference(data, order=1)
# Or detrend
data_detrended = analyzer.detrend(data)
Stationarity Report:
# Stationarity Analysis
## ADF Test (Augmented Dickey-Fuller)
- Test Statistic: -2.15
- P-value: 0.23
- Critical Value (5%): -2.89
- Result: ❌ NON-STATIONARY (p > 0.05)
## Recommendation
Apply differencing (order=1) to remove trend.
After differencing:
- ADF Test Statistic: -5.42
- P-value: 0.0001
- Result: ✅ STATIONARY
# Automatic seasonality detection
seasonality = analyzer.detect_seasonality(data)
# Results:
# - Daily: False
# - Weekly: True (period=7)
# - Monthly: True (period=30)
# - Yearly: False
# Time series cross-validation (expanding window)
cv_results = forecaster.cross_validate(
data=data,
horizon=30, # Forecast 30 steps ahead
n_splits=5, # 5 expanding windows
metric='mape'
)
# Visualizes:
# - MAPE across different time periods
# - Forecast vs actual for each fold
# - Model stability over time
# Time series-specific imputation
forecaster.handle_missing(
method='interpolate', # Or 'forward_fill', 'backward_fill'
limit=3 # Max consecutive missing values to fill
)
# For seasonal data
forecaster.handle_missing(
method='seasonal_interpolate',
period=12 # Use seasonal pattern to impute
)
from specweave import SalesForecastPipeline
pipeline = SalesForecastPipeline(increment="0042")
# Handles:
# - Weekly/monthly seasonality
# - Holiday effects
# - Marketing campaign impact
# - Trend changes
pipeline.fit(
sales_data=daily_sales,
holidays=us_holidays,
regressors={
'marketing_spend': marketing_data,
'competitor_price': competitor_data
}
)
forecast = pipeline.predict(horizon=90) # 90 days ahead
# Generates:
# - Point forecast
# - Prediction intervals (80%, 95%)
# - Component analysis (trend, seasonality, regressors)
# - Anomaly flags for past data
from specweave import DemandForecastPipeline
# Inventory optimization, supply chain planning
pipeline = DemandForecastPipeline(
aggregation='daily', # Or 'weekly', 'monthly'
increment="0042"
)
# Multi-product forecasting
forecasts = pipeline.fit_predict(
products=['product_A', 'product_B', 'product_C'],
horizon=30
)
# Generates:
# - Demand forecast per product
# - Confidence intervals
# - Stockout risk analysis
# - Reorder point recommendations
from specweave import FinancialForecastPipeline
# Stock prices, crypto, forex
pipeline = FinancialForecastPipeline(increment="0042")
# Handles:
# - Volatility clustering
# - Non-linear patterns
# - Technical indicators
pipeline.fit(
price_data=stock_prices,
features=['volume', 'volatility', 'RSI', 'MACD']
)
forecast = pipeline.predict(horizon=7)
# Generates:
# - Price forecast with confidence bands
# - Volatility forecast (GARCH)
# - Trading signals (optional)
# - Risk metrics
from specweave import SensorForecastPipeline
# Temperature, humidity, machine metrics
pipeline = SensorForecastPipeline(
method='lstm', # Deep learning for complex patterns
increment="0042"
)
# Multivariate: Multiple sensor readings
pipeline.fit(
sensors={
'temperature': temp_data,
'humidity': humidity_data,
'pressure': pressure_data
}
)
forecast = pipeline.predict(horizon=24) # 24 hours ahead
# Generates:
# - Multi-sensor forecasts
# - Anomaly detection (unexpected values)
# - Maintenance alerts
Time series-specific metrics:
from specweave import TimeSeriesEvaluator
evaluator = TimeSeriesEvaluator(increment="0042")
metrics = evaluator.evaluate(
y_true=test_data,
y_pred=forecast
)
# Metrics:
# - MAPE (Mean Absolute Percentage Error) - business-friendly
# - RMSE (Root Mean Squared Error) - penalizes large errors
# - MAE (Mean Absolute Error) - robust to outliers
# - MASE (Mean Absolute Scaled Error) - scale-independent
# - Directional Accuracy - did we predict up/down correctly?
Evaluation Report:
# Time Series Forecast Evaluation
## Point Metrics
- MAPE: 8.2% (target: <10%) ✅
- RMSE: 124.5
- MAE: 98.3
- MASE: 0.85 (< 1 = better than naive forecast) ✅
## Directional Accuracy
- Correct direction: 73% (up/down predictions)
## Forecast Bias
- Mean Error: -5.2 (slight under-forecasting)
- Bias: -2.1%
## Confidence Intervals
- 80% interval coverage: 79.2% ✅
- 95% interval coverage: 94.1% ✅
## Recommendation
✅ DEPLOY: Model meets accuracy targets and is well-calibrated.
.specweave/increments/0042-sales-forecast/
├── spec.md (forecasting requirements, accuracy targets)
├── plan.md (forecasting strategy, method selection)
├── tasks.md
├── data/
│ ├── train_data.csv
│ ├── test_data.csv
│ └── schema.yaml
├── experiments/
│ ├── arima-baseline/
│ ├── prophet-holidays/
│ └── lstm-multivariate/
├── models/
│ ├── prophet_model.pkl
│ └── lstm_model.h5
├── forecasts/
│ ├── forecast_2024-01.csv
│ ├── forecast_2024-02.csv
│ └── forecast_with_intervals.csv
└── analysis/
├── stationarity_test.md
├── seasonality_decomposition.png
└── forecast_evaluation.md
/sw:sync-docs update
Updates:
<!-- .specweave/docs/internal/architecture/time-series-forecasting.md -->
## Sales Forecasting Model (Increment 0042)
### Method Selected: Prophet
- Reason: Handles multiple seasonality + holidays well
- Alternatives tried: ARIMA (MAPE 12%), LSTM (MAPE 10%)
- Prophet: MAPE 8.2% ✅ BEST
### Seasonality Detected
- Weekly: Strong (7-day cycle)
- Monthly: Moderate (30-day cycle)
- Yearly: Weak
### Holiday Effects
- Black Friday: +180% sales (strongest)
- Christmas: +120% sales
- Thanksgiving: +80% sales
### Forecast Horizon
- 90 days ahead
- Confidence intervals: 80%, 95%
- Update frequency: Weekly retraining
### Model Performance
- MAPE: 8.2% (target: <10%)
- Directional accuracy: 73%
- Deployed: 2024-01-15
# Create time series forecast
/ml:forecast --horizon 30 --method prophet
# Evaluate forecast
/ml:evaluate-forecast 0042
# Decompose time series
/ml:decompose-timeseries 0042
# Combine multiple methods for robustness
ensemble = EnsembleForecast(increment="0042")
ensemble.add_forecaster("arima", weight=0.3)
ensemble.add_forecaster("prophet", weight=0.5)
ensemble.add_forecaster("lstm", weight=0.2)
# Weighted average of all forecasts
forecast = ensemble.predict(horizon=30)
# Ensemble typically 10-20% more accurate than single model
# For hierarchical time series (e.g., total sales = store1 + store2 + store3)
reconciler = ForecastReconciler(increment="0042")
# Ensures forecasts sum correctly
reconciled = reconciler.reconcile(
forecasts={
'total': total_forecast,
'store1': store1_forecast,
'store2': store2_forecast,
'store3': store3_forecast
},
method='bottom_up' # Or 'top_down', 'middle_out'
)
# Track forecast accuracy over time
monitor = ForecastMonitor(increment="0042")
# Compare forecasts vs actuals
monitor.track_performance(
forecasts=past_forecasts,
actuals=actual_values
)
# Alerts when accuracy degrades
if monitor.accuracy_degraded():
print("⚠️ Forecast accuracy dropped 15% - retrain model!")
Time series forecasting requires specialized techniques:
This skill handles all time series complexity within SpecWeave's increment workflow, ensuring forecasts are reproducible, documented, and production-ready.