Convex AI Integration - OpenAI, actions, streaming, and AI patterns with database integration
This skill inherits all available tools. When active, it can use any tool Claude has access to.
Complete guide for integrating AI capabilities (OpenAI, Google, etc.) with Convex, including actions, streaming, and best practices.
Install the OpenAI package:
npm install openai
Actions are the right place for AI calls because they can run for up to 10 minutes and make external API calls.
// convex/ai.ts
"use node";
import { action } from "./_generated/server";
import { v } from "convex/values";
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: process.env.OPENAI_API_KEY,
});
export const generateText = action({
args: {
prompt: v.string(),
},
returns: v.string(),
handler: async (ctx, args) => {
const response = await openai.chat.completions.create({
model: "gpt-4o-mini",
messages: [{ role: "user", content: args.prompt }],
});
return response.choices[0].message.content ?? "";
},
});
// convex/ai.ts
"use node";
import { action, internalQuery } from "./_generated/server";
import { internal } from "./_generated/api";
import { v } from "convex/values";
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: process.env.OPENAI_API_KEY,
});
export const generateResponse = action({
args: {
conversationId: v.id("conversations"),
},
returns: v.string(),
handler: async (ctx, args) => {
// Load context from the database
const messages = await ctx.runQuery(internal.ai.loadMessages, {
conversationId: args.conversationId,
});
const response = await openai.chat.completions.create({
model: "gpt-4o",
messages: messages,
});
const content = response.choices[0].message.content;
if (!content) {
throw new Error("No content in response");
}
// Save the response to the database
await ctx.runMutation(internal.ai.saveResponse, {
conversationId: args.conversationId,
content,
});
return content;
},
});
export const loadMessages = internalQuery({
args: {
conversationId: v.id("conversations"),
},
returns: v.array(
v.object({
role: v.union(v.literal("user"), v.literal("assistant"), v.literal("system")),
content: v.string(),
})
),
handler: async (ctx, args) => {
const messages = await ctx.db
.query("messages")
.withIndex("by_conversation", (q) => q.eq("conversationId", args.conversationId))
.order("asc")
.take(50);
return messages.map((msg) => ({
role: msg.role as "user" | "assistant" | "system",
content: msg.content,
}));
},
});
Use the scheduler to generate AI responses asynchronously:
// convex/messages.ts
import { mutation, internalMutation, internalAction } from "./_generated/server";
import { internal } from "./_generated/api";
import { v } from "convex/values";
export const sendMessage = mutation({
args: {
conversationId: v.id("conversations"),
content: v.string(),
},
returns: v.null(),
handler: async (ctx, args) => {
// Save user message
await ctx.db.insert("messages", {
conversationId: args.conversationId,
role: "user",
content: args.content,
});
// Schedule AI response (runs immediately but async)
await ctx.scheduler.runAfter(0, internal.ai.generateResponse, {
conversationId: args.conversationId,
});
return null;
},
});
When an AI action needs to update the database:
// convex/ai.ts
"use node";
import { internalAction, internalMutation } from "./_generated/server";
import { internal } from "./_generated/api";
import { v } from "convex/values";
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: process.env.OPENAI_API_KEY,
});
export const processWithAI = internalAction({
args: {
documentId: v.id("documents"),
},
returns: v.null(),
handler: async (ctx, args) => {
// 1. Load data from database
const document = await ctx.runQuery(internal.documents.get, {
id: args.documentId,
});
if (!document) {
throw new Error("Document not found");
}
// 2. Call AI
const response = await openai.chat.completions.create({
model: "gpt-4o-mini",
messages: [
{ role: "system", content: "Summarize the following document." },
{ role: "user", content: document.content },
],
});
const summary = response.choices[0].message.content ?? "";
// 3. Save result to database
await ctx.runMutation(internal.documents.updateSummary, {
id: args.documentId,
summary,
});
return null;
},
});
export const updateSummary = internalMutation({
args: {
id: v.id("documents"),
summary: v.string(),
},
returns: v.null(),
handler: async (ctx, args) => {
await ctx.db.patch(args.id, { summary: args.summary });
return null;
},
});
If you're using Chef's WebContainer environment, you have access to bundled OpenAI tokens:
// convex/ai.ts
import { action } from "./_generated/server";
import { v } from "convex/values";
import OpenAI from "openai";
// Use Chef's bundled OpenAI
const openai = new OpenAI({
baseURL: process.env.CONVEX_OPENAI_BASE_URL,
apiKey: process.env.CONVEX_OPENAI_API_KEY,
});
export const generateText = action({
args: {
prompt: v.string(),
},
returns: v.string(),
handler: async (ctx, args) => {
const resp = await openai.chat.completions.create({
model: "gpt-4.1-nano", // or "gpt-4o-mini"
messages: [{ role: "user", content: args.prompt }],
});
return resp.choices[0].message.content ?? "";
},
});
Available models:
gpt-4.1-nano (preferred for speed/cost)gpt-4o-miniLimitations:
"use node";
import { action } from "./_generated/server";
import { v } from "convex/values";
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: process.env.OPENAI_API_KEY,
});
export const safeGenerate = action({
args: {
prompt: v.string(),
},
returns: v.union(
v.object({ success: v.literal(true), content: v.string() }),
v.object({ success: v.literal(false), error: v.string() })
),
handler: async (ctx, args) => {
try {
const response = await openai.chat.completions.create({
model: "gpt-4o-mini",
messages: [{ role: "user", content: args.prompt }],
});
const content = response.choices[0].message.content;
if (!content) {
return { success: false as const, error: "No content in response" };
}
return { success: true as const, content };
} catch (error) {
const message = error instanceof Error ? error.message : "Unknown error";
return { success: false as const, error: message };
}
},
});
import { useAction } from "convex/react";
import { api } from "../convex/_generated/api";
import { useState } from "react";
function AIChat() {
const generateResponse = useAction(api.ai.generateText);
const [prompt, setPrompt] = useState("");
const [response, setResponse] = useState("");
const [isLoading, setIsLoading] = useState(false);
const [error, setError] = useState<string | null>(null);
async function handleSubmit(e: React.FormEvent) {
e.preventDefault();
if (!prompt.trim()) return;
setIsLoading(true);
setError(null);
try {
const result = await generateResponse({ prompt });
setResponse(result);
} catch (err) {
setError(err instanceof Error ? err.message : "An error occurred");
} finally {
setIsLoading(false);
}
}
return (
<div>
<form onSubmit={handleSubmit}>
<textarea
value={prompt}
onChange={(e) => setPrompt(e.target.value)}
placeholder="Enter your prompt..."
disabled={isLoading}
/>
<button type="submit" disabled={isLoading || !prompt.trim()}>
{isLoading ? "Generating..." : "Generate"}
</button>
</form>
{error && <div className="error">{error}</div>}
{response && (
<div className="response">
<h3>Response:</h3>
<p>{response}</p>
</div>
)}
</div>
);
}
Environment variables are available via process.env in all Convex functions:
// Works in queries, mutations, actions, and HTTP actions
const apiKey = process.env.MY_API_KEY;
const baseUrl = process.env.MY_SERVICE_URL;
OPENAI_API_KEY=sk-...
RESEND_API_KEY=re_...
RESEND_DOMAIN=yourdomain.com
RESEND_WEBHOOK_SECRET=whsec_...
To prevent abuse and control costs:
// convex/ai.ts
import { action, query } from "./_generated/server";
import { v } from "convex/values";
import { getAuthUserId } from "@convex-dev/auth/server";
const RATE_LIMIT_WINDOW = 60 * 1000; // 1 minute
const MAX_REQUESTS = 10;
export const generateWithRateLimit = action({
args: {
prompt: v.string(),
},
returns: v.string(),
handler: async (ctx, args) => {
// Check rate limit
const canProceed = await ctx.runQuery(internal.ai.checkRateLimit);
if (!canProceed) {
throw new Error("Rate limit exceeded. Please wait before trying again.");
}
// Record this request
await ctx.runMutation(internal.ai.recordRequest);
// Make AI call
const response = await openai.chat.completions.create({
model: "gpt-4o-mini",
messages: [{ role: "user", content: args.prompt }],
});
return response.choices[0].message.content ?? "";
},
});
export const checkRateLimit = internalQuery({
args: {},
returns: v.boolean(),
handler: async (ctx) => {
const userId = await getAuthUserId(ctx);
if (!userId) return false;
const windowStart = Date.now() - RATE_LIMIT_WINDOW;
const recentRequests = await ctx.db
.query("aiRequests")
.withIndex("by_user_and_time", (q) =>
q.eq("userId", userId).gt("timestamp", windowStart)
)
.collect();
return recentRequests.length < MAX_REQUESTS;
},
});
export const recordRequest = internalMutation({
args: {},
returns: v.null(),
handler: async (ctx) => {
const userId = await getAuthUserId(ctx);
if (!userId) throw new Error("Not authenticated");
await ctx.db.insert("aiRequests", {
userId,
timestamp: Date.now(),
});
return null;
},
});
"use node"; at the top of files with external API calls