Master advanced AgentDB features including QUIC synchronization, multi-database management, custom distance metrics, hybrid search, and distributed systems integration. Use when building distributed AI systems, multi-agent coordination, or advanced vector search applications.
Inherits all available tools
Additional assets for this skill
This skill inherits all available tools. When active, it can use any tool Claude has access to.
examples/example-1-quic-sync.mdexamples/example-2-multi-database.mdexamples/example-3-sharding.mdgraphviz/workflow.dotreadme.mdreferences/distributed-patterns.mdreferences/performance-optimization.mdreferences/quic-protocol.mdresources/readme.mdresources/scripts/custom_metrics.pyresources/scripts/multi_db_manage.shresources/scripts/quic_sync.pyresources/scripts/readme.mdresources/templates/distributed-db.jsonresources/templates/hybrid-search.yamlresources/templates/quic-config.yamltests/test-1-quic-sync.mdtests/test-2-multi-db.mdtests/test-3-hybrid-search.mdname: agentdb-advanced-features description: Master advanced AgentDB features including QUIC synchronization, multi-database management, custom distance metrics, hybrid search, and distributed systems integration. Use when building distributed AI systems, multi-agent coordination, or advanced vector search applications. version: 1.0.0 category: platforms tags:
Covers advanced AgentDB capabilities for distributed systems, multi-database coordination, custom distance metrics, hybrid search (vector + metadata), QUIC synchronization, and production deployment patterns. Enables building sophisticated AI systems with sub-millisecond cross-node communication and advanced search capabilities.
Performance: <1ms QUIC sync, hybrid search with filters, custom distance metrics.
QUIC (Quick UDP Internet Connections) enables sub-millisecond latency synchronization between AgentDB instances across network boundaries with automatic retry, multiplexing, and encryption.
Benefits:
import { createAgentDBAdapter } from 'agentic-flow/reasoningbank';
// Initialize with QUIC synchronization
const adapter = await createAgentDBAdapter({
dbPath: '.agentdb/distributed.db',
enableQUICSync: true,
syncPort: 4433,
syncPeers: [
'192.168.1.10:4433',
'192.168.1.11:4433',
'192.168.1.12:4433',
],
});
// Patterns automatically sync across all peers
await adapter.insertPattern({
// ... pattern data
});
// Available on all peers within ~1ms
const adapter = await createAgentDBAdapter({
enableQUICSync: true,
syncPort: 4433, // QUIC server port
syncPeers: ['host1:4433'], // Peer addresses
syncInterval: 1000, // Sync interval (ms)
syncBatchSize: 100, // Patterns per batch
maxRetries: 3, // Retry failed syncs
compression: true, // Enable compression
});
# Node 1 (192.168.1.10)
AGENTDB_QUIC_SYNC=true \
AGENTDB_QUIC_PORT=4433 \
AGENTDB_QUIC_PEERS=192.168.1.11:4433,192.168.1.12:4433 \
node server.js
# Node 2 (192.168.1.11)
AGENTDB_QUIC_SYNC=true \
AGENTDB_QUIC_PORT=4433 \
AGENTDB_QUIC_PEERS=192.168.1.10:4433,192.168.1.12:4433 \
node server.js
# Node 3 (192.168.1.12)
AGENTDB_QUIC_SYNC=true \
AGENTDB_QUIC_PORT=4433 \
AGENTDB_QUIC_PEERS=192.168.1.10:4433,192.168.1.11:4433 \
node server.js
Best for normalized vectors, semantic similarity:
# CLI
npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m cosine
# API
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
metric: 'cosine',
k: 10,
});
Use Cases:
Formula: cos(θ) = (A · B) / (||A|| × ||B||)
Range: [-1, 1] (1 = identical, -1 = opposite)
Best for spatial data, geometric similarity:
# CLI
npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m euclidean
# API
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
metric: 'euclidean',
k: 10,
});
Use Cases:
Formula: d = √(Σ(ai - bi)²)
Range: [0, ∞] (0 = identical, ∞ = very different)
Best for pre-normalized vectors, fast computation:
# CLI
npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m dot
# API
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
metric: 'dot',
k: 10,
});
Use Cases:
Formula: dot = Σ(ai × bi)
Range: [-∞, ∞] (higher = more similar)
// Implement custom distance function
function customDistance(vec1: number[], vec2: number[]): number {
// Weighted Euclidean distance
const weights = [1.0, 2.0, 1.5, ...];
let sum = 0;
for (let i = 0; i < vec1.length; i++) {
sum += weights[i] * Math.pow(vec1[i] - vec2[i], 2);
}
return Math.sqrt(sum);
}
// Use in search (requires custom implementation)
Combine vector similarity with metadata filtering:
// Store documents with metadata
await adapter.insertPattern({
id: '',
type: 'document',
domain: 'research-papers',
pattern_data: JSON.stringify({
embedding: documentEmbedding,
text: documentText,
metadata: {
author: 'Jane Smith',
year: 2025,
category: 'machine-learning',
citations: 150,
}
}),
confidence: 1.0,
usage_count: 0,
success_count: 0,
created_at: Date.now(),
last_used: Date.now(),
});
// Hybrid search: vector similarity + metadata filters
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
domain: 'research-papers',
k: 20,
filters: {
year: { $gte: 2023 }, // Published 2023 or later
category: 'machine-learning', // ML papers only
citations: { $gte: 50 }, // Highly cited
},
});
// Complex metadata queries
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
domain: 'products',
k: 50,
filters: {
price: { $gte: 10, $lte: 100 }, // Price range
category: { $in: ['electronics', 'gadgets'] }, // Multiple categories
rating: { $gte: 4.0 }, // High rated
inStock: true, // Available
tags: { $contains: 'wireless' }, // Has tag
},
});
Combine vector and metadata scores:
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
domain: 'content',
k: 20,
hybridWeights: {
vectorSimilarity: 0.7, // 70% weight on semantic similarity
metadataScore: 0.3, // 30% weight on metadata match
},
filters: {
category: 'technology',
recency: { $gte: Date.now() - 30 * 24 * 3600000 }, // Last 30 days
},
});
// Separate databases for different domains
const knowledgeDB = await createAgentDBAdapter({
dbPath: '.agentdb/knowledge.db',
});
const conversationDB = await createAgentDBAdapter({
dbPath: '.agentdb/conversations.db',
});
const codeDB = await createAgentDBAdapter({
dbPath: '.agentdb/code.db',
});
// Use appropriate database for each task
await knowledgeDB.insertPattern({ /* knowledge */ });
await conversationDB.insertPattern({ /* conversation */ });
await codeDB.insertPattern({ /* code */ });
// Shard by domain for horizontal scaling
const shards = {
'domain-a': await createAgentDBAdapter({ dbPath: '.agentdb/shard-a.db' }),
'domain-b': await createAgentDBAdapter({ dbPath: '.agentdb/shard-b.db' }),
'domain-c': await createAgentDBAdapter({ dbPath: '.agentdb/shard-c.db' }),
};
// Route queries to appropriate shard
function getDBForDomain(domain: string) {
const shardKey = domain.split('-')[0]; // Extract shard key
return shards[shardKey] || shards['domain-a'];
}
// Insert to correct shard
const db = getDBForDomain('domain-a-task');
await db.insertPattern({ /* ... */ });
Retrieve diverse results to avoid redundancy:
// Without MMR: Similar results may be redundant
const standardResults = await adapter.retrieveWithReasoning(queryEmbedding, {
k: 10,
useMMR: false,
});
// With MMR: Diverse, non-redundant results
const diverseResults = await adapter.retrieveWithReasoning(queryEmbedding, {
k: 10,
useMMR: true,
mmrLambda: 0.5, // Balance relevance (0) vs diversity (1)
});
MMR Parameters:
mmrLambda = 0: Maximum relevance (may be redundant)mmrLambda = 0.5: Balanced (default)mmrLambda = 1: Maximum diversity (may be less relevant)Use Cases:
Generate rich context from multiple memories:
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
domain: 'problem-solving',
k: 10,
synthesizeContext: true, // Enable context synthesis
});
// ContextSynthesizer creates coherent narrative
console.log('Synthesized Context:', result.context);
// "Based on 10 similar problem-solving attempts, the most effective
// approach involves: 1) analyzing root cause, 2) brainstorming solutions,
// 3) evaluating trade-offs, 4) implementing incrementally. Success rate: 85%"
console.log('Patterns:', result.patterns);
// Extracted common patterns across memories
// Singleton pattern for shared adapter
class AgentDBPool {
private static instance: AgentDBAdapter;
static async getInstance() {
if (!this.instance) {
this.instance = await createAgentDBAdapter({
dbPath: '.agentdb/production.db',
quantizationType: 'scalar',
cacheSize: 2000,
});
}
return this.instance;
}
}
// Use in application
const db = await AgentDBPool.getInstance();
const results = await db.retrieveWithReasoning(queryEmbedding, { k: 10 });
async function safeRetrieve(queryEmbedding: number[], options: any) {
try {
const result = await adapter.retrieveWithReasoning(queryEmbedding, options);
return result;
} catch (error) {
if (error.code === 'DIMENSION_MISMATCH') {
console.error('Query embedding dimension mismatch');
// Handle dimension error
} else if (error.code === 'DATABASE_LOCKED') {
// Retry with exponential backoff
await new Promise(resolve => setTimeout(resolve, 100));
return safeRetrieve(queryEmbedding, options);
}
throw error;
}
}
// Performance monitoring
const startTime = Date.now();
const result = await adapter.retrieveWithReasoning(queryEmbedding, { k: 10 });
const latency = Date.now() - startTime;
if (latency > 100) {
console.warn('Slow query detected:', latency, 'ms');
}
// Log statistics
const stats = await adapter.getStats();
console.log('Database Stats:', {
totalPatterns: stats.totalPatterns,
dbSize: stats.dbSize,
cacheHitRate: stats.cacheHitRate,
avgSearchLatency: stats.avgSearchLatency,
});
# Export with compression
npx agentdb@latest export ./vectors.db ./backup.json.gz --compress
# Import from backup
npx agentdb@latest import ./backup.json.gz --decompress
# Merge databases
npx agentdb@latest merge ./db1.sqlite ./db2.sqlite ./merged.sqlite
# Vacuum database (reclaim space)
sqlite3 .agentdb/vectors.db "VACUUM;"
# Analyze for query optimization
sqlite3 .agentdb/vectors.db "ANALYZE;"
# Rebuild indices
npx agentdb@latest reindex ./vectors.db
# AgentDB configuration
AGENTDB_PATH=.agentdb/reasoningbank.db
AGENTDB_ENABLED=true
# Performance tuning
AGENTDB_QUANTIZATION=binary # binary|scalar|product|none
AGENTDB_CACHE_SIZE=2000
AGENTDB_HNSW_M=16
AGENTDB_HNSW_EF=100
# Learning plugins
AGENTDB_LEARNING=true
# Reasoning agents
AGENTDB_REASONING=true
# QUIC synchronization
AGENTDB_QUIC_SYNC=true
AGENTDB_QUIC_PORT=4433
AGENTDB_QUIC_PEERS=host1:4433,host2:4433
# Check firewall allows UDP port 4433
sudo ufw allow 4433/udp
# Verify peers are reachable
ping host1
# Check QUIC logs
DEBUG=agentdb:quic node server.js
// Relax filters
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
k: 100, // Increase k
filters: {
// Remove or relax filters
},
});
// Disable automatic optimization
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
optimizeMemory: false, // Disable auto-consolidation
k: 10,
});
Category: Advanced / Distributed Systems Difficulty: Advanced Estimated Time: 45-60 minutes