Implement semantic vector search with AgentDB for intelligent document retrieval, similarity matching, and context-aware querying. Use when building RAG systems, semantic search engines, or intelligent knowledge bases.
Inherits all available tools
Additional assets for this skill
This skill inherits all available tools. When active, it can use any tool Claude has access to.
examples/example-1-rag-basic.mdexamples/example-2-hybrid-search.mdexamples/example-3-reranking.mdgraphviz/workflow.dotreadme.mdreferences/embedding-models.mdreferences/rag-patterns.mdresources/scripts/rag_pipeline.shresources/scripts/semantic_search.pyresources/scripts/similarity_match.pyresources/templates/embedding-model.jsonresources/templates/rag-config.yamlresources/templates/vector-index.yamltests/test-1-semantic-search.mdtests/test-2-rag-system.mdtests/test-3-knowledge-base.mdname: agentdb-vector-search description: Implement semantic vector search with AgentDB for intelligent document retrieval, similarity matching, and context-aware querying. Use when building RAG systems, semantic search engines, or intelligent knowledge bases. version: 1.0.0 category: platforms tags:
Implements vector-based semantic search using AgentDB's high-performance vector database with 150x-12,500x faster operations than traditional solutions. Features HNSW indexing, quantization, and sub-millisecond search (<100µs).
# Initialize with default dimensions (1536 for OpenAI ada-002)
npx agentdb@latest init ./vectors.db
# Custom dimensions for different embedding models
npx agentdb@latest init ./vectors.db --dimension 768 # sentence-transformers
npx agentdb@latest init ./vectors.db --dimension 384 # all-MiniLM-L6-v2
# Use preset configurations
npx agentdb@latest init ./vectors.db --preset small # <10K vectors
npx agentdb@latest init ./vectors.db --preset medium # 10K-100K vectors
npx agentdb@latest init ./vectors.db --preset large # >100K vectors
# In-memory database for testing
npx agentdb@latest init ./vectors.db --in-memory
# Basic similarity search
npx agentdb@latest query ./vectors.db "[0.1,0.2,0.3,...]"
# Top-k results
npx agentdb@latest query ./vectors.db "[0.1,0.2,0.3]" -k 10
# With similarity threshold (cosine similarity)
npx agentdb@latest query ./vectors.db "0.1 0.2 0.3" -t 0.75 -m cosine
# Different distance metrics
npx agentdb@latest query ./vectors.db "[...]" -m euclidean # L2 distance
npx agentdb@latest query ./vectors.db "[...]" -m dot # Dot product
# JSON output for automation
npx agentdb@latest query ./vectors.db "[...]" -f json -k 5
# Verbose output with distances
npx agentdb@latest query ./vectors.db "[...]" -v
# Export vectors to JSON
npx agentdb@latest export ./vectors.db ./backup.json
# Import vectors from JSON
npx agentdb@latest import ./backup.json
# Get database statistics
npx agentdb@latest stats ./vectors.db
import { createAgentDBAdapter, computeEmbedding } from 'agentic-flow/reasoningbank';
// Initialize with vector search optimizations
const adapter = await createAgentDBAdapter({
dbPath: '.agentdb/vectors.db',
enableLearning: false, // Vector search only
enableReasoning: true, // Enable semantic matching
quantizationType: 'binary', // 32x memory reduction
cacheSize: 1000, // Fast retrieval
});
// Store document with embedding
const text = "The quantum computer achieved 100 qubits";
const embedding = await computeEmbedding(text);
await adapter.insertPattern({
id: '',
type: 'document',
domain: 'technology',
pattern_data: JSON.stringify({
embedding,
text,
metadata: { category: "quantum", date: "2025-01-15" }
}),
confidence: 1.0,
usage_count: 0,
success_count: 0,
created_at: Date.now(),
last_used: Date.now(),
});
// Semantic search with MMR (Maximal Marginal Relevance)
const queryEmbedding = await computeEmbedding("quantum computing advances");
const results = await adapter.retrieveWithReasoning(queryEmbedding, {
domain: 'technology',
k: 10,
useMMR: true, // Diverse results
synthesizeContext: true, // Rich context
});
// Store with automatic embedding
await db.storeWithEmbedding({
content: "Your document text",
metadata: { source: "docs", page: 42 }
});
// Find similar documents
const similar = await db.findSimilar("quantum computing", {
limit: 5,
minScore: 0.75
});
// Combine vector similarity with metadata filtering
const results = await db.hybridSearch({
query: "machine learning models",
filters: {
category: "research",
date: { $gte: "2024-01-01" }
},
limit: 20
});
// Build RAG pipeline
async function ragQuery(question: string) {
// 1. Get relevant context
const context = await db.searchSimilar(
await embed(question),
{ limit: 5, threshold: 0.7 }
);
// 2. Generate answer with context
const prompt = `Context: ${context.map(c => c.text).join('\n')}
Question: ${question}`;
return await llm.generate(prompt);
}
// Efficient batch storage
await db.batchStore(documents.map(doc => ({
text: doc.content,
embedding: doc.vector,
metadata: doc.meta
})));
# Start AgentDB MCP server for Claude Code
npx agentdb@latest mcp
# Add to Claude Code (one-time setup)
claude mcp add agentdb npx agentdb@latest mcp
# Now use MCP tools in Claude Code:
# - agentdb_query: Semantic vector search
# - agentdb_store: Store documents with embeddings
# - agentdb_stats: Database statistics
# Run comprehensive benchmarks
npx agentdb@latest benchmark
# Results:
# ✅ Pattern Search: 150x faster (100µs vs 15ms)
# ✅ Batch Insert: 500x faster (2ms vs 1s for 100 vectors)
# ✅ Large-scale Query: 12,500x faster (8ms vs 100s at 1M vectors)
# ✅ Memory Efficiency: 4-32x reduction with quantization
AgentDB provides multiple quantization strategies for memory efficiency:
const adapter = await createAgentDBAdapter({
quantizationType: 'binary', // 768-dim → 96 bytes
});
const adapter = await createAgentDBAdapter({
quantizationType: 'scalar', // 768-dim → 768 bytes
});
const adapter = await createAgentDBAdapter({
quantizationType: 'product', // 768-dim → 48-96 bytes
});
# Cosine similarity (default, best for most use cases)
npx agentdb@latest query ./db.sqlite "[...]" -m cosine
# Euclidean distance (L2 norm)
npx agentdb@latest query ./db.sqlite "[...]" -m euclidean
# Dot product (for normalized vectors)
npx agentdb@latest query ./db.sqlite "[...]" -m dot
# Check if HNSW indexing is enabled (automatic)
npx agentdb@latest stats ./vectors.db
# Expected: <100µs search time
# Enable binary quantization (32x reduction)
# Use in adapter: quantizationType: 'binary'
# Adjust similarity threshold
npx agentdb@latest query ./db.sqlite "[...]" -t 0.8 # Higher threshold
# Or use MMR for diverse results
# Use in adapter: useMMR: true
# Check embedding model dimensions:
# - OpenAI ada-002: 1536
# - sentence-transformers: 768
# - all-MiniLM-L6-v2: 384
npx agentdb@latest init ./db.sqlite --dimension 768
# Get comprehensive stats
npx agentdb@latest stats ./vectors.db
# Shows:
# - Total patterns/vectors
# - Database size
# - Average confidence
# - Domains distribution
# - Index status
npx agentdb@latest mcp for Claude Codenpx agentdb@latest --helpnpx agentdb@latest help <command>