name: github-code-review
version: 2.0.0
tier: gold
description: Comprehensive GitHub code review with AI-powered swarm coordination
category: github
tags: [code-review, github, swarm, pr-management, automation]
author: Claude Code Flow
requires:
- github-cli
- ruv-swarm
- claude-flow
capabilities:
- Multi-agent code review
- Automated PR management
- Security and performance analysis
- Swarm-based review orchestration
- Intelligent comment generation
- Quality gate enforcement
resources:
scripts:
- pr-analysis.js
- swarm-coordinator.js
- comment-generator.js
- review-metrics.js
templates:
- review-config.yml
- pr-template.md
- github-workflow.yml
tests:
- test-pr-analysis.js
- test-swarm-coordinator.js
- test-comment-generator.js
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
GitHub Code Review Skill
AI-Powered Code Review: Deploy specialized review agents to perform comprehensive, intelligent code reviews that go beyond traditional static analysis.
🎯 Quick Start
Simple Review
# Initialize review swarm for PR
gh pr view 123 --json files,diff | npx ruv-swarm github review-init --pr 123
# Post review status
gh pr comment 123 --body "🔍 Multi-agent code review initiated"
Complete Review Workflow
# Get PR context with gh CLI
PR_DATA=$(gh pr view 123 --json files,additions,deletions,title,body)
PR_DIFF=$(gh pr diff 123)
# Initialize comprehensive review
npx ruv-swarm github review-init \
--pr 123 \
--pr-data "$PR_DATA" \
--diff "$PR_DIFF" \
--agents "security,performance,style,architecture,accessibility" \
--depth comprehensive
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
📚 Table of Contents
<details>
<summary><strong>Core Features</strong></summary>
</details>
<details>
<summary><strong>Review Agents</strong></summary>
</details>
<details>
<summary><strong>Advanced Features</strong></summary>
</details>
<details>
<summary><strong>Integration & Automation</strong></summary>
</details>
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
🚀 Core Features
Multi-Agent Review System
Deploy specialized AI agents for comprehensive code review:
# Initialize review swarm with GitHub CLI integration
PR_DATA=$(gh pr view 123 --json files,additions,deletions,title,body)
PR_DIFF=$(gh pr diff 123)
# Start multi-agent review
npx ruv-swarm github review-init \
--pr 123 \
--pr-data "$PR_DATA" \
--diff "$PR_DIFF" \
--agents "security,performance,style,architecture,accessibility" \
--depth comprehensive
# Post initial review status
gh pr comment 123 --body "🔍 Multi-agent code review initiated"
Benefits:
- ✅ Parallel review by specialized agents
- ✅ Comprehensive coverage across multiple domains
- ✅ Faster review cycles with coordinated analysis
- ✅ Consistent quality standards enforcement
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
🤖 Specialized Review Agents
Security Review Agent
Focus: Identify security vulnerabilities and suggest fixes
# Get changed files from PR
CHANGED_FILES=$(gh pr view 123 --json files --jq '.files[].path')
# Run security-focused review
SECURITY_RESULTS=$(npx ruv-swarm github review-security \
--pr 123 \
--files "$CHANGED_FILES" \
--check "owasp,cve,secrets,permissions" \
--suggest-fixes)
# Post findings based on severity
if echo "$SECURITY_RESULTS" | grep -q "critical"; then
# Request changes for critical issues
gh pr review 123 --request-changes --body "$SECURITY_RESULTS"
gh pr edit 123 --add-label "security-review-required"
else
# Post as comment for non-critical issues
gh pr comment 123 --body "$SECURITY_RESULTS"
fi
<details>
<summary><strong>Security Checks Performed</strong></summary>
{
"checks": [
"SQL injection vulnerabilities",
"XSS attack vectors",
"Authentication bypasses",
"Authorization flaws",
"Cryptographic weaknesses",
"Dependency vulnerabilities",
"Secret exposure",
"CORS misconfigurations"
],
"actions": [
"Block PR on critical issues",
"Suggest secure alternatives",
"Add security test cases",
"Update security documentation"
]
}
</details>
<details>
<summary><strong>Comment Template: Security Issue</strong></summary>
🔒 **Security Issue: [Type]**
**Severity**: 🔴 Critical / 🟡 High / 🟢 Low
**Description**:
[Clear explanation of the security issue]
**Impact**:
[Potential consequences if not addressed]
**Suggested Fix**:
```language
[Code example of the fix]
References:
</details>
---
## When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
## When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
## Success Criteria
This skill succeeds when:
- **Violations Detected**: All quality issues found with ZERO false negatives
- **False Positive Rate**: <5% (95%+ findings are genuine issues)
- **Actionable Feedback**: Every finding includes file path, line number, and fix guidance
- **Root Cause Identified**: Issues traced to underlying causes, not just symptoms
- **Fix Verification**: Proposed fixes validated against codebase constraints
## Edge Cases and Limitations
Handle these edge cases carefully:
- **Empty Files**: May trigger false positives - verify intent (stub vs intentional)
- **Generated Code**: Skip or flag as low priority (auto-generated files)
- **Third-Party Libraries**: Exclude from analysis (vendor/, node_modules/)
- **Domain-Specific Patterns**: What looks like violation may be intentional (DSLs)
- **Legacy Code**: Balance ideal standards with pragmatic technical debt management
## Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- **NEVER approve code without evidence**: Require actual execution, not assumptions
- **ALWAYS provide line numbers**: Every finding MUST include file:line reference
- **VALIDATE findings against multiple perspectives**: Cross-check with complementary tools
- **DISTINGUISH symptoms from root causes**: Report underlying issues, not just manifestations
- **AVOID false confidence**: Flag uncertain findings as "needs manual review"
- **PRESERVE context**: Show surrounding code (5 lines before/after minimum)
- **TRACK false positives**: Learn from mistakes to improve detection accuracy
## Evidence-Based Validation
Use multiple validation perspectives:
1. **Static Analysis**: Code structure, patterns, metrics (connascence, complexity)
2. **Dynamic Analysis**: Execution behavior, test results, runtime characteristics
3. **Historical Analysis**: Git history, past bug patterns, change frequency
4. **Peer Review**: Cross-validation with other quality skills (functionality-audit, theater-detection)
5. **Domain Expertise**: Leverage .claude/expertise/{domain}.yaml if available
**Validation Threshold**: Findings require 2+ confirming signals before flagging as violations.
## Integration with Quality Pipeline
This skill integrates with:
- **Pre-Phase**: Load domain expertise (.claude/expertise/{domain}.yaml)
- **Parallel Skills**: functionality-audit, theater-detection-audit, style-audit
- **Post-Phase**: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- **Feedback Loop**: Learnings feed dogfooding-system for continuous improvement
### Performance Review Agent
**Focus:** Analyze performance impact and optimization opportunities
```bash
# Run performance analysis
npx ruv-swarm github review-performance \
--pr 123 \
--profile "cpu,memory,io" \
--benchmark-against main \
--suggest-optimizations
<details>
<summary><strong>Performance Metrics Analyzed</strong></summary>
{
"metrics": [
"Algorithm complexity (Big O analysis)",
"Database query efficiency",
"Memory allocation patterns",
"Cache utilization",
"Network request optimization",
"Bundle size impact",
"Render performance"
],
"benchmarks": [
"Compare with baseline",
"Load test simulations",
"Memory leak detection",
"Bottleneck identification"
]
}
</details>
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
Architecture Review Agent
Focus: Evaluate design patterns and architectural decisions
# Architecture review
npx ruv-swarm github review-architecture \
--pr 123 \
--check "patterns,coupling,cohesion,solid" \
--visualize-impact \
--suggest-refactoring
<details>
<summary><strong>Architecture Analysis</strong></summary>
{
"patterns": [
"Design pattern adherence",
"SOLID principles",
"DRY violations",
"Separation of concerns",
"Dependency injection",
"Layer violations",
"Circular dependencies"
],
"metrics": [
"Coupling metrics",
"Cohesion scores",
"Complexity measures",
"Maintainability index"
]
}
</details>
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
Style & Convention Agent
Focus: Enforce coding standards and best practices
# Style enforcement with auto-fix
npx ruv-swarm github review-style \
--pr 123 \
--check "formatting,naming,docs,tests" \
--auto-fix "formatting,imports,whitespace"
<details>
<summary><strong>Style Checks</strong></summary>
{
"checks": [
"Code formatting",
"Naming conventions",
"Documentation standards",
"Comment quality",
"Test coverage",
"Error handling patterns",
"Logging standards"
],
"auto-fix": [
"Formatting issues",
"Import organization",
"Trailing whitespace",
"Simple naming issues"
]
}
</details>
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
🔄 PR-Based Swarm Management
Create Swarm from PR
# Create swarm from PR description using gh CLI
gh pr view 123 --json body,title,labels,files | npx ruv-swarm swarm create-from-pr
# Auto-spawn agents based on PR labels
gh pr view 123 --json labels | npx ruv-swarm swarm auto-spawn
# Create swarm with full PR context
gh pr view 123 --json body,labels,author,assignees | \
npx ruv-swarm swarm init --from-pr-data
Label-Based Agent Assignment
Map PR labels to specialized agents:
{
"label-mapping": {
"bug": ["debugger", "tester"],
"feature": ["architect", "coder", "tester"],
"refactor": ["analyst", "coder"],
"docs": ["researcher", "writer"],
"performance": ["analyst", "optimizer"],
"security": ["security", "authentication", "audit"]
}
}
Topology Selection by PR Size
# Automatic topology selection based on PR complexity
# Small PR (< 100 lines): ring topology
# Medium PR (100-500 lines): mesh topology
# Large PR (> 500 lines): hierarchical topology
npx ruv-swarm github pr-topology --pr 123
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
🎬 PR Comment Commands
Execute swarm commands directly from PR comments:
<!-- In PR comment -->
/swarm init mesh 6
/swarm spawn coder "Implement authentication"
/swarm spawn tester "Write unit tests"
/swarm status
/swarm review --agents security,performance
<details>
<summary><strong>Webhook Handler for Comment Commands</strong></summary>
// webhook-handler.js
const { createServer } = require('http');
const { execSync } = require('child_process');
createServer((req, res) => {
if (req.url === '/github-webhook') {
const event = JSON.parse(body);
if (event.action === 'opened' && event.pull_request) {
execSync(`npx ruv-swarm github pr-init ${event.pull_request.number}`);
}
if (event.comment && event.comment.body.startsWith('/swarm')) {
const command = event.comment.body;
execSync(`npx ruv-swarm github handle-comment --pr ${event.issue.number} --command "${command}"`);
}
res.writeHead(200);
res.end('OK');
}
}).listen(3000);
</details>
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
⚙️ Review Configuration
Configuration File
# .github/review-swarm.yml
version: 1
review:
auto-trigger: true
required-agents:
- security
- performance
- style
optional-agents:
- architecture
- accessibility
- i18n
thresholds:
security: block # Block merge on security issues
performance: warn # Warn on performance issues
style: suggest # Suggest style improvements
rules:
security:
- no-eval
- no-hardcoded-secrets
- proper-auth-checks
- validate-input
performance:
- no-n-plus-one
- efficient-queries
- proper-caching
- optimize-loops
architecture:
- max-coupling: 5
- min-cohesion: 0.7
- follow-patterns
- avoid-circular-deps
Custom Review Triggers
{
"triggers": {
"high-risk-files": {
"paths": ["**/auth/**", "**/payment/**", "**/admin/**"],
"agents": ["security", "architecture"],
"depth": "comprehensive",
"require-approval": true
},
"performance-critical": {
"paths": ["**/api/**", "**/database/**", "**/cache/**"],
"agents": ["performance", "database"],
"benchmarks": true,
"regression-threshold": "5%"
},
"ui-changes": {
"paths": ["**/components/**", "**/styles/**", "**/pages/**"],
"agents": ["accessibility", "style", "i18n"],
"visual-tests": true,
"responsive-check": true
}
}
}
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
🤖 Automated Workflows
Auto-Review on PR Creation
# .github/workflows/auto-review.yml
name: Automated Code Review
on:
pull_request:
types: [opened, synchronize]
issue_comment:
types: [created]
jobs:
swarm-review:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Setup GitHub CLI
run: echo "${{ secrets.GITHUB_TOKEN }}" | gh auth login --with-token
- name: Run Review Swarm
run: |
# Get PR context with gh CLI
PR_NUM=${{ github.event.pull_request.number }}
PR_DATA=$(gh pr view $PR_NUM --json files,title,body,labels)
PR_DIFF=$(gh pr diff $PR_NUM)
# Run swarm review
REVIEW_OUTPUT=$(npx ruv-swarm github review-all \
--pr $PR_NUM \
--pr-data "$PR_DATA" \
--diff "$PR_DIFF" \
--agents "security,performance,style,architecture")
# Post review results
echo "$REVIEW_OUTPUT" | gh pr review $PR_NUM --comment -F -
# Update PR status
if echo "$REVIEW_OUTPUT" | grep -q "approved"; then
gh pr review $PR_NUM --approve
elif echo "$REVIEW_OUTPUT" | grep -q "changes-requested"; then
gh pr review $PR_NUM --request-changes -b "See review comments above"
fi
- name: Update Labels
run: |
# Add labels based on review results
if echo "$REVIEW_OUTPUT" | grep -q "security"; then
gh pr edit $PR_NUM --add-label "security-review"
fi
if echo "$REVIEW_OUTPUT" | grep -q "performance"; then
gh pr edit $PR_NUM --add-label "performance-review"
fi
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
💬 Intelligent Comment Generation
Generate Contextual Review Comments
# Get PR diff with context
PR_DIFF=$(gh pr diff 123 --color never)
PR_FILES=$(gh pr view 123 --json files)
# Generate review comments
COMMENTS=$(npx ruv-swarm github review-comment \
--pr 123 \
--diff "$PR_DIFF" \
--files "$PR_FILES" \
--style "constructive" \
--include-examples \
--suggest-fixes)
# Post comments using gh CLI
echo "$COMMENTS" | jq -c '.[]' | while read -r comment; do
FILE=$(echo "$comment" | jq -r '.path')
LINE=$(echo "$comment" | jq -r '.line')
BODY=$(echo "$comment" | jq -r '.body')
COMMIT_ID=$(gh pr view 123 --json headRefOid -q .headRefOid)
# Create inline review comments
gh api \
--method POST \
/repos/:owner/:repo/pulls/123/comments \
-f path="$FILE" \
-f line="$LINE" \
-f body="$BODY" \
-f commit_id="$COMMIT_ID"
done
Batch Comment Management
# Manage review comments efficiently
npx ruv-swarm github review-comments \
--pr 123 \
--group-by "agent,severity" \
--summarize \
--resolve-outdated
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
🚪 Quality Gates & Checks
Status Checks
# Required status checks in branch protection
protection_rules:
required_status_checks:
strict: true
contexts:
- "review-swarm/security"
- "review-swarm/performance"
- "review-swarm/architecture"
- "review-swarm/tests"
Define Quality Gates
# Set quality gate thresholds
npx ruv-swarm github quality-gates \
--define '{
"security": {"threshold": "no-critical"},
"performance": {"regression": "<5%"},
"coverage": {"minimum": "80%"},
"architecture": {"complexity": "<10"},
"duplication": {"maximum": "5%"}
}'
Track Review Metrics
# Monitor review effectiveness
npx ruv-swarm github review-metrics \
--period 30d \
--metrics "issues-found,false-positives,fix-rate,time-to-review" \
--export-dashboard \
--format json
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
🎓 Advanced Features
Context-Aware Reviews
Analyze PRs with full project context:
# Review with comprehensive context
npx ruv-swarm github review-context \
--pr 123 \
--load-related-prs \
--analyze-impact \
--check-breaking-changes \
--dependency-analysis
Learning from History
Train review agents on your codebase patterns:
# Learn from past reviews
npx ruv-swarm github review-learn \
--analyze-past-reviews \
--identify-patterns \
--improve-suggestions \
--reduce-false-positives
# Train on your codebase
npx ruv-swarm github review-train \
--learn-patterns \
--adapt-to-style \
--improve-accuracy
Cross-PR Analysis
Coordinate reviews across related pull requests:
# Analyze related PRs together
npx ruv-swarm github review-batch \
--prs "123,124,125" \
--check-consistency \
--verify-integration \
--combined-impact
Multi-PR Swarm Coordination
# Coordinate swarms across related PRs
npx ruv-swarm github multi-pr \
--prs "123,124,125" \
--strategy "parallel" \
--share-memory
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
🛠️ Custom Review Agents
Create Custom Agent
// custom-review-agent.js
class CustomReviewAgent {
constructor(config) {
this.config = config;
this.rules = config.rules || [];
}
async review(pr) {
const issues = [];
// Custom logic: Check for TODO comments in production code
if (await this.checkTodoComments(pr)) {
issues.push({
severity: 'warning',
file: pr.file,
line: pr.line,
message: 'TODO comment found in production code',
suggestion: 'Resolve TODO or create issue to track it'
});
}
// Custom logic: Verify API versioning
if (await this.checkApiVersioning(pr)) {
issues.push({
severity: 'error',
file: pr.file,
line: pr.line,
message: 'API endpoint missing versioning',
suggestion: 'Add /v1/, /v2/ prefix to API routes'
});
}
return issues;
}
async checkTodoComments(pr) {
// Implementation
const todoRegex = /\/\/\s*TODO|\/\*\s*TODO/gi;
return todoRegex.test(pr.diff);
}
async checkApiVersioning(pr) {
// Implementation
const apiRegex = /app\.(get|post|put|delete)\(['"]\/api\/(?!v\d+)/;
return apiRegex.test(pr.diff);
}
}
module.exports = CustomReviewAgent;
Register Custom Agent
# Register custom review agent
npx ruv-swarm github register-agent \
--name "custom-reviewer" \
--file "./custom-review-agent.js" \
--category "standards"
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
🔧 CI/CD Integration
Integration with Build Pipeline
# .github/workflows/build-and-review.yml
name: Build and Review
on: [pull_request]
jobs:
build-and-test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- run: npm install
- run: npm test
- run: npm run build
swarm-review:
needs: build-and-test
runs-on: ubuntu-latest
steps:
- name: Run Swarm Review
run: |
npx ruv-swarm github review-all \
--pr ${{ github.event.pull_request.number }} \
--include-build-results
Automated PR Fixes
# Auto-fix common issues
npx ruv-swarm github pr-fix 123 \
--issues "lint,test-failures,formatting" \
--commit-fixes \
--push-changes
Progress Updates to PR
# Post swarm progress to PR using gh CLI
PROGRESS=$(npx ruv-swarm github pr-progress 123 --format markdown)
gh pr comment 123 --body "$PROGRESS"
# Update PR labels based on progress
if [[ $(echo "$PROGRESS" | grep -o '[0-9]\+%' | sed 's/%//') -gt 90 ]]; then
gh pr edit 123 --add-label "ready-for-review"
fi
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
📋 Complete Workflow Examples
Example 1: Security-Critical PR
# Review authentication system changes
npx ruv-swarm github review-init \
--pr 456 \
--agents "security,authentication,audit" \
--depth "maximum" \
--require-security-approval \
--penetration-test
Example 2: Performance-Sensitive PR
# Review database optimization
npx ruv-swarm github review-init \
--pr 789 \
--agents "performance,database,caching" \
--benchmark \
--profile \
--load-test
Example 3: UI Component PR
# Review new component library
npx ruv-swarm github review-init \
--pr 321 \
--agents "accessibility,style,i18n,docs" \
--visual-regression \
--component-tests \
--responsive-check
Example 4: Feature Development PR
# Review new feature implementation
gh pr view 456 --json body,labels,files | \
npx ruv-swarm github pr-init 456 \
--topology hierarchical \
--agents "architect,coder,tester,security" \
--auto-assign-tasks
Example 5: Bug Fix PR
# Review bug fix with debugging focus
npx ruv-swarm github pr-init 789 \
--topology mesh \
--agents "debugger,analyst,tester" \
--priority high \
--regression-test
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
📊 Monitoring & Analytics
Review Dashboard
# Launch real-time review dashboard
npx ruv-swarm github review-dashboard \
--real-time \
--show "agent-activity,issue-trends,fix-rates,coverage"
Generate Review Reports
# Create comprehensive review report
npx ruv-swarm github review-report \
--format "markdown" \
--include "summary,details,trends,recommendations" \
--email-stakeholders \
--export-pdf
PR Swarm Analytics
# Generate PR-specific analytics
npx ruv-swarm github pr-report 123 \
--metrics "completion-time,agent-efficiency,token-usage,issue-density" \
--format markdown \
--compare-baseline
Export to GitHub Insights
# Export metrics to GitHub Insights
npx ruv-swarm github export-metrics \
--pr 123 \
--to-insights \
--dashboard-url
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
🔐 Security Considerations
Best Practices
- Token Permissions: Ensure GitHub tokens have minimal required scopes
- Command Validation: Validate all PR comments before execution
- Rate Limiting: Implement rate limits for PR operations
- Audit Trail: Log all swarm operations for compliance
- Secret Management: Never expose API keys in PR comments or logs
Security Checklist
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
📚 Best Practices
1. Review Configuration
- ✅ Define clear review criteria upfront
- ✅ Set appropriate severity thresholds
- ✅ Configure agent specializations for your stack
- ✅ Establish override procedures for emergencies
2. Comment Quality
- ✅ Provide actionable, specific feedback
- ✅ Include code examples with suggestions
- ✅ Reference documentation and best practices
- ✅ Maintain respectful, constructive tone
3. Performance Optimization
- ✅ Cache analysis results to avoid redundant work
- ✅ Use incremental reviews for large PRs
- ✅ Enable parallel agent execution
- ✅ Batch comment operations efficiently
4. PR Templates
<!-- .github/pull_request_template.md -->
## Swarm Configuration
- Topology: [mesh/hierarchical/ring/star]
- Max Agents: [number]
- Auto-spawn: [yes/no]
- Priority: [high/medium/low]
## Tasks for Swarm
- [ ] Task 1 description
- [ ] Task 2 description
- [ ] Task 3 description
## Review Focus Areas
- [ ] Security review
- [ ] Performance analysis
- [ ] Architecture validation
- [ ] Accessibility check
5. Auto-Merge When Ready
# Auto-merge when swarm completes and passes checks
SWARM_STATUS=$(npx ruv-swarm github pr-status 123)
if [[ "$SWARM_STATUS" == "complete" ]]; then
# Check review requirements
REVIEWS=$(gh pr view 123 --json reviews --jq '.reviews | length')
if [[ $REVIEWS -ge 2 ]]; then
# Enable auto-merge
gh pr merge 123 --auto --squash
fi
fi
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
🔗 Integration with Claude Code
Workflow Pattern
- Claude Code reads PR diff and context
- Swarm coordinates review approach based on PR type
- Agents work in parallel on different review aspects
- Progress updates posted to PR automatically
- Final review performed before marking ready
Example: Complete PR Management
[Single Message - Parallel Execution]:
// Initialize coordination
mcp__claude-flow__swarm_init { topology: "hierarchical", maxAgents: 5 }
mcp__claude-flow__agent_spawn { type: "reviewer", name: "Senior Reviewer" }
mcp__claude-flow__agent_spawn { type: "tester", name: "QA Engineer" }
mcp__claude-flow__agent_spawn { type: "coordinator", name: "Merge Coordinator" }
// Create and manage PR using gh CLI
Bash("gh pr create --title 'Feature: Add authentication' --base main")
Bash("gh pr view 54 --json files,diff")
Bash("gh pr review 54 --approve --body 'LGTM after automated review'")
// Execute tests and validation
Bash("npm test")
Bash("npm run lint")
Bash("npm run build")
// Track progress
TodoWrite { todos: [
{ content: "Complete code review", status: "completed", activeForm: "Completing code review" },
{ content: "Run test suite", status: "completed", activeForm: "Running test suite" },
{ content: "Validate security", status: "completed", activeForm: "Validating security" },
{ content: "Merge when ready", status: "pending", activeForm: "Merging when ready" }
]}
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
🆘 Troubleshooting
Common Issues
<details>
<summary><strong>Issue: Review agents not spawning</strong></summary>
Solution:
# Check swarm status
npx ruv-swarm swarm-status
# Verify GitHub CLI authentication
gh auth status
# Re-initialize swarm
npx ruv-swarm github review-init --pr 123 --force
</details>
<details>
<summary><strong>Issue: Comments not posting to PR</strong></summary>
Solution:
# Verify GitHub token permissions
gh auth status
# Check API rate limits
gh api rate_limit
# Use batch comment posting
npx ruv-swarm github review-comments --pr 123 --batch
</details>
<details>
<summary><strong>Issue: Review taking too long</strong></summary>
Solution:
# Use incremental review for large PRs
npx ruv-swarm github review-init --pr 123 --incremental
# Reduce agent count
npx ruv-swarm github review-init --pr 123 --agents "security,style" --max-agents 3
# Enable parallel processing
npx ruv-swarm github review-init --pr 123 --parallel --cache-results
</details>
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
📖 Additional Resources
Related Skills
github-pr-manager - Comprehensive PR lifecycle management
github-workflow-automation - Automate GitHub workflows
swarm-coordination - Advanced swarm orchestration
Documentation
Support
- GitHub Issues: Report bugs and request features
- Community: Join discussions and share experiences
- Examples: Browse example configurations and workflows
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
📄 License
This skill is part of the Claude Code Flow project and is licensed under the MIT License.
When to Use This Skill
Use this skill when:
- Code quality issues are detected (violations, smells, anti-patterns)
- Audit requirements mandate systematic review (compliance, release gates)
- Review needs arise (pre-merge, production hardening, refactoring preparation)
- Quality metrics indicate degradation (test coverage drop, complexity increase)
- Theater detection is needed (mock data, stubs, incomplete implementations)
When NOT to Use This Skill
Do NOT use this skill for:
- Simple formatting fixes (use linter/prettier directly)
- Non-code files (documentation, configuration without logic)
- Trivial changes (typo fixes, comment updates)
- Generated code (build artifacts, vendor dependencies)
- Third-party libraries (focus on application code)
Success Criteria
This skill succeeds when:
- Violations Detected: All quality issues found with ZERO false negatives
- False Positive Rate: <5% (95%+ findings are genuine issues)
- Actionable Feedback: Every finding includes file path, line number, and fix guidance
- Root Cause Identified: Issues traced to underlying causes, not just symptoms
- Fix Verification: Proposed fixes validated against codebase constraints
Edge Cases and Limitations
Handle these edge cases carefully:
- Empty Files: May trigger false positives - verify intent (stub vs intentional)
- Generated Code: Skip or flag as low priority (auto-generated files)
- Third-Party Libraries: Exclude from analysis (vendor/, node_modules/)
- Domain-Specific Patterns: What looks like violation may be intentional (DSLs)
- Legacy Code: Balance ideal standards with pragmatic technical debt management
Quality Analysis Guardrails
CRITICAL RULES - ALWAYS FOLLOW:
- NEVER approve code without evidence: Require actual execution, not assumptions
- ALWAYS provide line numbers: Every finding MUST include file:line reference
- VALIDATE findings against multiple perspectives: Cross-check with complementary tools
- DISTINGUISH symptoms from root causes: Report underlying issues, not just manifestations
- AVOID false confidence: Flag uncertain findings as "needs manual review"
- PRESERVE context: Show surrounding code (5 lines before/after minimum)
- TRACK false positives: Learn from mistakes to improve detection accuracy
Evidence-Based Validation
Use multiple validation perspectives:
- Static Analysis: Code structure, patterns, metrics (connascence, complexity)
- Dynamic Analysis: Execution behavior, test results, runtime characteristics
- Historical Analysis: Git history, past bug patterns, change frequency
- Peer Review: Cross-validation with other quality skills (functionality-audit, theater-detection)
- Domain Expertise: Leverage .claude/expertise/{domain}.yaml if available
Validation Threshold: Findings require 2+ confirming signals before flagging as violations.
Integration with Quality Pipeline
This skill integrates with:
- Pre-Phase: Load domain expertise (.claude/expertise/{domain}.yaml)
- Parallel Skills: functionality-audit, theater-detection-audit, style-audit
- Post-Phase: Store findings in Memory MCP with WHO/WHEN/PROJECT/WHY tags
- Feedback Loop: Learnings feed dogfooding-system for continuous improvement
Last Updated: 2025-10-19
Version: 1.0.0
Maintainer: Claude Code Flow Team