Debug ML training issues and optimize performance including loss divergence, overfitting, and slow convergence
Inherits all available tools
Additional assets for this skill
This skill inherits all available tools. When active, it can use any tool Claude has access to.
process-diagram.gvprocess.mdreadme.mdname: when-debugging-ml-training-use-ml-training-debugger version: 1.0.0 description: Debug ML training issues and optimize performance including loss divergence, overfitting, and slow convergence category: machine-learning tags:
Systematic debugging workflow for ML training issues including loss divergence, overfitting, slow convergence, gradient problems, and performance optimization.
Identify the specific training problem
Step 1.1: Analyze Training Curves
import json
import numpy as np
# Load training history
with open('training_history.json', 'r') as f:
history = json.load(f)
# Diagnose issues
diagnosis = {
'loss_divergence': check_loss_divergence(history['loss']),
'overfitting': check_overfitting(history['loss'], history['val_loss']),
'slow_convergence': check_convergence_rate(history['loss']),
'gradient_issues': check_gradient_health(history),
'nan_values': any(np.isnan(history['loss']))
}
def check_loss_divergence(losses):
# Loss increasing over time
if len(losses) > 10:
recent_trend = np.mean(losses[-5:]) > np.mean(losses[-10:-5])
return recent_trend
def check_overfitting(train_loss, val_loss):
# Val loss diverging from train loss
if len(train_loss) > 10:
gap = np.mean(val_loss[-5:]) - np.mean(train_loss[-5:])
return gap > 0.5 # Significant gap
def check_convergence_rate(losses):
# Loss barely changing
if len(losses) > 20:
recent_change = abs(losses[-1] - losses[-10])
return recent_change < 0.01 # Plateau
await memory.store('ml-debugger/diagnosis', diagnosis)
Step 1.2: Identify Root Cause
root_causes = []
if diagnosis['loss_divergence']:
root_causes.append({
'issue': 'Loss Divergence',
'likely_cause': 'Learning rate too high',
'severity': 'HIGH',
'fix': 'Reduce learning rate by 10x'
})
if diagnosis['nan_values']:
root_causes.append({
'issue': 'NaN Loss',
'likely_cause': 'Numerical instability',
'severity': 'CRITICAL',
'fix': 'Add gradient clipping, reduce LR, check data for extreme values'
})
if diagnosis['overfitting']:
root_causes.append({
'issue': 'Overfitting',
'likely_cause': 'Model too complex or insufficient regularization',
'severity': 'MEDIUM',
'fix': 'Add dropout, L2 regularization, or more training data'
})
if diagnosis['slow_convergence']:
root_causes.append({
'issue': 'Slow Convergence',
'likely_cause': 'Learning rate too low or poor initialization',
'severity': 'LOW',
'fix': 'Increase learning rate, use better initialization'
})
await memory.store('ml-debugger/root-causes', root_causes)
Step 1.3: Generate Diagnostic Report
report = f"""
# ML Training Diagnostic Report
## Issues Detected
{chr(10).join([f"- **{rc['issue']}** (Severity: {rc['severity']})" for rc in root_causes])}
## Root Cause Analysis
{chr(10).join([f"""
### {rc['issue']}
- **Likely Cause**: {rc['likely_cause']}
- **Recommended Fix**: {rc['fix']}
""" for rc in root_causes])}
## Training History Summary
- Final Train Loss: {history['loss'][-1]:.4f}
- Final Val Loss: {history['val_loss'][-1]:.4f}
- Epochs Completed: {len(history['loss'])}
"""
with open('diagnostic_report.md', 'w') as f:
f.write(report)
Deep dive into the specific problem
Step 2.1: Gradient Analysis
import tensorflow as tf
# Monitor gradients during training
def gradient_analysis(model, X_batch, y_batch):
with tf.GradientTape() as tape:
predictions = model(X_batch, training=True)
loss = loss_fn(y_batch, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
analysis = {
'gradient_norms': [tf.norm(g).numpy() for g in gradients if g is not None],
'has_nan': any(tf.reduce_any(tf.math.is_nan(g)) for g in gradients if g is not None),
'has_inf': any(tf.reduce_any(tf.math.is_inf(g)) for g in gradients if g is not None)
}
# Check for vanishing/exploding gradients
gradient_norms = np.array(analysis['gradient_norms'])
analysis['vanishing'] = np.mean(gradient_norms) < 1e-7
analysis['exploding'] = np.mean(gradient_norms) > 100
return analysis
grad_analysis = gradient_analysis(model, X_train[:32], y_train[:32])
await memory.store('ml-debugger/gradient-analysis', grad_analysis)
Step 2.2: Data Analysis
# Check for data issues
data_issues = {
'class_imbalance': check_class_balance(y_train),
'outliers': detect_outliers(X_train),
'missing_normalization': check_normalization(X_train),
'label_noise': estimate_label_noise(X_train, y_train, model)
}
def check_class_balance(labels):
unique, counts = np.unique(labels, return_counts=True)
imbalance_ratio = max(counts) / min(counts)
return imbalance_ratio > 10 # Significant imbalance
def check_normalization(data):
mean = np.mean(data, axis=0)
std = np.std(data, axis=0)
# Data should be roughly normalized
return np.mean(np.abs(mean)) > 1 or np.mean(std) > 10
await memory.store('ml-debugger/data-issues', data_issues)
Step 2.3: Model Architecture Review
# Analyze model complexity
architecture_analysis = {
'total_params': model.count_params(),
'trainable_params': sum([tf.size(v).numpy() for v in model.trainable_variables]),
'depth': len(model.layers),
'has_batch_norm': any('batch_norm' in layer.name for layer in model.layers),
'has_dropout': any('dropout' in layer.name for layer in model.layers),
'activation_functions': [layer.activation.__name__ for layer in model.layers if hasattr(layer, 'activation')]
}
# Check for common issues
architecture_issues = []
if architecture_analysis['total_params'] / len(X_train) > 10:
architecture_issues.append('Model too complex relative to data size')
if not architecture_analysis['has_batch_norm'] and architecture_analysis['depth'] > 10:
architecture_issues.append('Deep model without batch normalization')
await memory.store('ml-debugger/architecture-issues', architecture_issues)
Implement corrections based on diagnosis
Step 3.1: Fix Learning Rate
if 'Loss Divergence' in [rc['issue'] for rc in root_causes]:
# Reduce learning rate
old_lr = model.optimizer.learning_rate.numpy()
new_lr = old_lr / 10
model.optimizer.learning_rate.assign(new_lr)
print(f"✅ Reduced learning rate: {old_lr} → {new_lr}")
if 'Slow Convergence' in [rc['issue'] for rc in root_causes]:
# Increase learning rate with warmup
new_lr = old_lr * 5
model.optimizer.learning_rate.assign(new_lr)
# Add LR scheduler
lr_scheduler = tf.keras.callbacks.ReduceLROnPlateau(
monitor='val_loss',
factor=0.5,
patience=5,
min_lr=1e-7
)
Step 3.2: Fix Overfitting
if 'Overfitting' in [rc['issue'] for rc in root_causes]:
# Add regularization
from tensorflow.keras import regularizers
# Clone model with regularization
new_layers = []
for layer in model.layers:
if isinstance(layer, tf.keras.layers.Dense):
new_layer = tf.keras.layers.Dense(
layer.units,
activation=layer.activation,
kernel_regularizer=regularizers.l2(0.01), # Add L2
name=layer.name + '_reg'
)
new_layers.append(new_layer)
# Add dropout after dense layers
new_layers.append(tf.keras.layers.Dropout(0.3))
else:
new_layers.append(layer)
# Rebuild model
fixed_model = tf.keras.Sequential(new_layers)
fixed_model.compile(
optimizer=model.optimizer,
loss=model.loss,
metrics=model.metrics
)
print("✅ Added L2 regularization and dropout")
Step 3.3: Fix Gradient Issues
if grad_analysis['exploding']:
# Add gradient clipping
optimizer = tf.keras.optimizers.Adam(
learning_rate=0.001,
clipnorm=1.0 # Clip by global norm
)
model.compile(
optimizer=optimizer,
loss=model.loss,
metrics=model.metrics
)
print("✅ Added gradient clipping")
if grad_analysis['vanishing']:
# Use better activation functions
# Replace sigmoid/tanh with ReLU/LeakyReLU
for layer in model.layers:
if hasattr(layer, 'activation'):
if layer.activation.__name__ in ['sigmoid', 'tanh']:
layer.activation = tf.keras.activations.relu
print(f"✅ Changed {layer.name} activation to ReLU")
Step 3.4: Fix Data Issues
if data_issues['class_imbalance']:
# Compute class weights
from sklearn.utils.class_weight import compute_class_weight
class_weights = compute_class_weight(
'balanced',
classes=np.unique(y_train),
y=y_train
)
class_weight_dict = dict(enumerate(class_weights))
print(f"✅ Applying class weights: {class_weight_dict}")
if data_issues['missing_normalization']:
# Re-normalize data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_fixed = scaler.fit_transform(X_train)
X_val_fixed = scaler.transform(X_val)
print("✅ Data re-normalized")
Verify that fixes resolve the issues
Step 4.1: Retrain Model
# Retrain with fixes
print("Retraining model with fixes...")
history_fixed = model.fit(
X_train_fixed, y_train,
validation_data=(X_val_fixed, y_val),
batch_size=32,
epochs=50,
callbacks=[
tf.keras.callbacks.EarlyStopping(patience=10),
lr_scheduler if 'Slow Convergence' in [rc['issue'] for rc in root_causes] else None
],
class_weight=class_weight_dict if data_issues['class_imbalance'] else None,
verbose=1
)
# Save fixed training history
with open('training_history_fixed.json', 'w') as f:
json.dump({
'loss': history_fixed.history['loss'],
'val_loss': history_fixed.history['val_loss'],
'accuracy': history_fixed.history['accuracy'],
'val_accuracy': history_fixed.history['val_accuracy']
}, f)
Step 4.2: Compare Before/After
comparison = {
'before': {
'final_train_loss': history['loss'][-1],
'final_val_loss': history['val_loss'][-1],
'final_val_acc': history['val_accuracy'][-1],
'converged': len(history['loss']) < 100
},
'after': {
'final_train_loss': history_fixed.history['loss'][-1],
'final_val_loss': history_fixed.history['val_loss'][-1],
'final_val_acc': history_fixed.history['val_accuracy'][-1],
'converged': history_fixed.history['val_loss'][-1] < history_fixed.history['val_loss'][-10]
},
'improvement': {
'val_loss_reduction': (history['val_loss'][-1] - history_fixed.history['val_loss'][-1]) / history['val_loss'][-1] * 100,
'val_acc_improvement': (history_fixed.history['val_accuracy'][-1] - history['val_accuracy'][-1]) * 100
}
}
await memory.store('ml-debugger/comparison', comparison)
Step 4.3: Visualize Comparison
import matplotlib.pyplot as plt
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
# Loss comparison
axes[0,0].plot(history['loss'], label='Before (Train)', alpha=0.7)
axes[0,0].plot(history['val_loss'], label='Before (Val)', alpha=0.7)
axes[0,0].plot(history_fixed.history['loss'], label='After (Train)', linestyle='--')
axes[0,0].plot(history_fixed.history['val_loss'], label='After (Val)', linestyle='--')
axes[0,0].set_title('Loss Comparison')
axes[0,0].legend()
axes[0,0].grid(True)
# Accuracy comparison
axes[0,1].plot(history['accuracy'], label='Before (Train)', alpha=0.7)
axes[0,1].plot(history['val_accuracy'], label='Before (Val)', alpha=0.7)
axes[0,1].plot(history_fixed.history['accuracy'], label='After (Train)', linestyle='--')
axes[0,1].plot(history_fixed.history['val_accuracy'], label='After (Val)', linestyle='--')
axes[0,1].set_title('Accuracy Comparison')
axes[0,1].legend()
axes[0,1].grid(True)
plt.savefig('training_comparison.png')
Apply additional optimizations
Step 5.1: Generate Recommendations
recommendations = []
if comparison['after']['final_val_acc'] < 0.85:
recommendations.append({
'type': 'Architecture',
'suggestion': 'Try deeper model or different architecture (CNN, Transformer)',
'expected_improvement': '+5-10% accuracy'
})
if comparison['after']['final_val_loss'] > 0.5:
recommendations.append({
'type': 'Data',
'suggestion': 'Collect more training data or apply data augmentation',
'expected_improvement': 'Better generalization'
})
if history_fixed.history['loss'][-1] > 0.1:
recommendations.append({
'type': 'Training',
'suggestion': 'Train longer with learning rate scheduling',
'expected_improvement': 'Lower training loss'
})
await memory.store('ml-debugger/recommendations', recommendations)
Step 5.2: Generate Final Report
# ML Training Debug Report
## Original Issues
${root_causes.map(rc => `- ${rc.issue}: ${rc.likely_cause}`).join('\n')}
## Fixes Applied
${fixes_applied.map(fix => `- ${fix}`).join('\n')}
## Results
### Before
- Val Loss: ${comparison.before.final_val_loss.toFixed(4)}
- Val Accuracy: ${(comparison.before.final_val_acc * 100).toFixed(2)}%
### After
- Val Loss: ${comparison.after.final_val_loss.toFixed(4)}
- Val Accuracy: ${(comparison.after.final_val_acc * 100).toFixed(2)}%
### Improvement
- Val Loss Reduction: ${comparison.improvement.val_loss_reduction.toFixed(2)}%
- Val Accuracy Gain: +${comparison.improvement.val_acc_improvement.toFixed(2)}%
## Recommendations for Further Improvement
${recommendations.map((r, i) => `${i+1}. **${r.type}**: ${r.suggestion} (${r.expected_improvement})`).join('\n')}
Outputs:
Complete when training issues resolved and model performing well.