Create PydanticAI agents with type-safe dependencies, structured outputs, and proper configuration. Use when building AI agents, creating chat systems, or integrating LLMs with Pydantic validation.
This skill inherits all available tools. When active, it can use any tool Claude has access to.
from pydantic_ai import Agent
# Minimal agent (text output)
agent = Agent('openai:gpt-4o')
result = agent.run_sync('Hello!')
print(result.output) # str
Model strings follow provider:model-name format:
# OpenAI
agent = Agent('openai:gpt-4o')
agent = Agent('openai:gpt-4o-mini')
# Anthropic
agent = Agent('anthropic:claude-sonnet-4-5')
agent = Agent('anthropic:claude-haiku-4-5')
# Google
agent = Agent('google-gla:gemini-2.0-flash')
agent = Agent('google-vertex:gemini-2.0-flash')
# Others: groq:, mistral:, cohere:, bedrock:, etc.
Use Pydantic models for validated, typed responses:
from pydantic import BaseModel
from pydantic_ai import Agent
class CityInfo(BaseModel):
city: str
country: str
population: int
agent = Agent('openai:gpt-4o', output_type=CityInfo)
result = agent.run_sync('Tell me about Paris')
print(result.output.city) # "Paris"
print(result.output.population) # int, validated
agent = Agent(
'openai:gpt-4o',
output_type=MyOutput, # Structured output type
deps_type=MyDeps, # Dependency injection type
instructions='You are helpful.', # Static instructions
retries=2, # Retry attempts for validation
name='my-agent', # For logging/tracing
model_settings=ModelSettings( # Provider settings
temperature=0.7,
max_tokens=1000
),
end_strategy='early', # How to handle tool calls with results
)
Three execution methods:
# Async (preferred)
result = await agent.run('prompt', deps=my_deps)
# Sync (convenience)
result = agent.run_sync('prompt', deps=my_deps)
# Streaming
async with agent.run_stream('prompt') as response:
async for chunk in response.stream_output():
print(chunk, end='')
# Instructions: Concatenated, for agent behavior
agent = Agent(
'openai:gpt-4o',
instructions='You are a helpful assistant. Be concise.'
)
# Dynamic instructions via decorator
@agent.instructions
def add_context(ctx: RunContext[MyDeps]) -> str:
return f"User ID: {ctx.deps.user_id}"
# System prompts: Static, for model context
agent = Agent(
'openai:gpt-4o',
system_prompt=['You are an expert.', 'Always cite sources.']
)
from dataclasses import dataclass
from pydantic_ai import Agent, RunContext
@dataclass
class Deps:
api_key: str
user_id: int
agent: Agent[Deps, str] = Agent(
'openai:gpt-4o',
deps_type=Deps,
)
# deps is now required and type-checked
result = agent.run_sync('Hello', deps=Deps(api_key='...', user_id=123))
# Option 1: Explicit type annotation
agent: Agent[None, str] = Agent('openai:gpt-4o')
# Option 2: Pass deps=None
result = agent.run_sync('Hello', deps=None)
| Scenario | Configuration |
|---|---|
| Simple text responses | Agent(model) |
| Structured data extraction | Agent(model, output_type=MyModel) |
| Need external services | Add deps_type=MyDeps |
| Validation retries needed | Increase retries=3 |
| Debugging/monitoring | Set instrument=True |