Test PydanticAI agents using TestModel, FunctionModel, VCR cassettes, and inline snapshots. Use when writing unit tests, mocking LLM responses, or recording API interactions.
This skill inherits all available tools. When active, it can use any tool Claude has access to.
Use TestModel for tests without API calls:
import pytest
from pydantic_ai import Agent
from pydantic_ai.models.test import TestModel
def test_agent_basic():
agent = Agent('openai:gpt-4o')
# Override with TestModel for testing
result = agent.run_sync('Hello', model=TestModel())
# TestModel generates deterministic output based on output_type
assert isinstance(result.output, str)
from pydantic_ai.models.test import TestModel
# Custom text output
model = TestModel(custom_output_text='Custom response')
result = agent.run_sync('Hello', model=model)
assert result.output == 'Custom response'
# Custom structured output (for output_type agents)
from pydantic import BaseModel
class Response(BaseModel):
message: str
score: int
agent = Agent('openai:gpt-4o', output_type=Response)
model = TestModel(custom_output_args={'message': 'Test', 'score': 42})
result = agent.run_sync('Hello', model=model)
assert result.output.message == 'Test'
# Seed for reproducible random output
model = TestModel(seed=42)
# Force tool calls
model = TestModel(call_tools=['my_tool', 'another_tool'])
from pydantic_ai import Agent
from pydantic_ai.models.test import TestModel
agent = Agent('openai:gpt-4o', deps_type=MyDeps)
def test_with_override():
mock_deps = MyDeps(db=MockDB())
with agent.override(model=TestModel(), deps=mock_deps):
# All runs use TestModel and mock_deps
result = agent.run_sync('Hello')
assert result.output
For complete control over model responses:
from pydantic_ai import Agent, ModelMessage, ModelResponse, TextPart
from pydantic_ai.models.function import AgentInfo, FunctionModel
def custom_model(
messages: list[ModelMessage],
info: AgentInfo
) -> ModelResponse:
"""Custom model that inspects messages and returns response."""
# Access the last user message
last_msg = messages[-1]
# Return custom response
return ModelResponse(parts=[TextPart('Custom response')])
agent = Agent(FunctionModel(custom_model))
result = agent.run_sync('Hello')
from pydantic_ai import ToolCallPart, ModelResponse
from pydantic_ai.models.function import AgentInfo, FunctionModel
def model_with_tools(
messages: list[ModelMessage],
info: AgentInfo
) -> ModelResponse:
# First request: call a tool
if len(messages) == 1:
return ModelResponse(parts=[
ToolCallPart(
tool_name='get_data',
args='{"id": 123}'
)
])
# After tool response: return final result
return ModelResponse(parts=[TextPart('Done with tool result')])
agent = Agent(FunctionModel(model_with_tools))
@agent.tool_plain
def get_data(id: int) -> str:
return f"Data for {id}"
result = agent.run_sync('Get data')
Record and replay real LLM API interactions:
import pytest
@pytest.mark.vcr
def test_with_recorded_response():
"""Uses recorded cassette from tests/cassettes/"""
agent = Agent('openai:gpt-4o')
result = agent.run_sync('Hello')
assert 'hello' in result.output.lower()
# To record/update cassettes:
# uv run pytest --record-mode=rewrite tests/test_file.py
Cassette files are stored in tests/cassettes/ as YAML.
Assert expected outputs with auto-updating snapshots:
from inline_snapshot import snapshot
def test_agent_output():
result = agent.run_sync('Hello', model=TestModel())
# First run: creates snapshot
# Subsequent runs: asserts against it
assert result.output == snapshot('expected output here')
# Update snapshots:
# uv run pytest --inline-snapshot=fix
from pydantic_ai import Agent, RunContext
from pydantic_ai.models.test import TestModel
def test_tool_is_called():
agent = Agent('openai:gpt-4o')
tool_called = False
@agent.tool_plain
def my_tool(x: int) -> str:
nonlocal tool_called
tool_called = True
return f"Result: {x}"
# Force TestModel to call the tool
result = agent.run_sync(
'Use my_tool',
model=TestModel(call_tools=['my_tool'])
)
assert tool_called
from dataclasses import dataclass
from unittest.mock import AsyncMock
@dataclass
class Deps:
api: ApiClient
def test_tool_with_deps():
# Create mock dependency
mock_api = AsyncMock()
mock_api.fetch.return_value = {'data': 'test'}
agent = Agent('openai:gpt-4o', deps_type=Deps)
@agent.tool
async def fetch_data(ctx: RunContext[Deps]) -> dict:
return await ctx.deps.api.fetch()
with agent.override(
model=TestModel(call_tools=['fetch_data']),
deps=Deps(api=mock_api)
):
result = agent.run_sync('Fetch data')
mock_api.fetch.assert_called_once()
Inspect all messages in a run:
from pydantic_ai import Agent, capture_run_messages
agent = Agent('openai:gpt-4o')
with capture_run_messages() as messages:
result = agent.run_sync('Hello', model=TestModel())
# Inspect captured messages
for msg in messages:
print(msg)
| Scenario | Approach |
|---|---|
| Unit tests without API | TestModel() |
| Custom model logic | FunctionModel(func) |
| Recorded real responses | @pytest.mark.vcr |
| Assert output structure | inline_snapshot |
| Test tools are called | TestModel(call_tools=[...]) |
| Mock dependencies | agent.override(deps=...) |
Typical pyproject.toml:
[tool.pytest.ini_options]
testpaths = ["tests"]
asyncio_mode = "auto" # For async tests
Run tests:
uv run pytest tests/test_agent.py -v
uv run pytest --inline-snapshot=fix # Update snapshots