Optimize machine learning model hyperparameters using grid search, random search, or Bayesian optimization. Finds best parameter configurations to maximize performance. Use when asked to "tune hyperparameters" or "optimize model".
This skill is limited to using the following tools:
assets/README.mdassets/hyperparameter_space_template.jsonassets/visualization_template.htmlreferences/README.mdscripts/README.mdscripts/bayesian_optimization.pyscripts/data_validation.pyscripts/error_handling.pyscripts/evaluation_metrics.pyscripts/grid_search.pyscripts/hyperparameter_space.pyscripts/model_trainer.pyscripts/random_search.pyThis skill empowers Claude to fine-tune machine learning models by automatically searching for the optimal hyperparameter configurations. It leverages different search strategies (grid, random, Bayesian) to efficiently explore the hyperparameter space and identify settings that maximize model performance.
This skill activates when you need to:
User request: "Tune hyperparameters of a Random Forest model using grid search to maximize accuracy on the iris dataset. Consider n_estimators and max_depth."
The skill will:
User request: "Optimize a Gradient Boosting model using Bayesian optimization with Optuna to minimize the root mean squared error on the Boston housing dataset."
The skill will:
This skill integrates seamlessly with other Claude Code plugins that involve machine learning tasks, such as data analysis, model training, and deployment. It can be used in conjunction with data visualization tools to gain insights into the impact of different hyperparameter settings on model performance.