Use when provisioning Vertex AI infrastructure with Terraform. Trigger with phrases like "vertex ai terraform", "deploy gemini terraform", "model garden infrastructure", "vertex ai endpoints terraform", or "vector search terraform". Provisions Model Garden models, Gemini endpoints, vector search indices, ML pipelines, and production AI services with encryption and auto-scaling.
This skill is limited to using the following tools:
scripts/init-terraform.shBefore using this skill, ensure:
Gemini Model Endpoint:
# {baseDir}/terraform/vertex-endpoints.tf
resource "google_vertex_ai_endpoint" "gemini_endpoint" {
name = "gemini-25-flash-endpoint"
display_name = "Gemini 2.5 Flash Production"
location = var.region
encryption_spec {
kms_key_name = google_kms_crypto_key.vertex_key.id
}
}
resource "google_vertex_ai_deployed_model" "gemini_deployment" {
endpoint = google_vertex_ai_endpoint.gemini_endpoint.id
model = "publishers/google/models/gemini-2.5-flash"
automatic_resources {
min_replica_count = 1
max_replica_count = 5
}
}
Vector Search Index:
resource "google_vertex_ai_index" "embeddings_index" {
display_name = "production-embeddings"
location = var.region
metadata {
contents_delta_uri = "gs://${google_storage_bucket.embeddings.name}/index"
config {
dimensions = 768
approximate_neighbors_count = 150
distance_measure_type = "DOT_PRODUCT_DISTANCE"
algorithm_config {
tree_ah_config {
leaf_node_embedding_count = 1000
leaf_nodes_to_search_percent = 10
}
}
}
}
}
API Not Enabled
gcloud services enable aiplatform.googleapis.comModel Not Found
Quota Exceeded
KMS Key Access Denied
Vector Search Build Failed