> "All Concepts are Cat#" — Spivak (ACT 2023)
/plugin marketplace add plurigrid/asi/plugin install asi-skills@asi-skillsThis skill inherits all available tools. When active, it can use any tool Claude has access to.
"All Concepts are Cat#" — Spivak (ACT 2023) "All Concepts are Kan Extensions" — Mac Lane
Trit: 0 (ERGODIC)
Color: #26D826 (Green)
Role: Coordinator/Transporter
XIP: 6728DB (Reflow Operator)
ACSet Mapping: 138 skills → Cat# = Comod(P)
Cat# = Comod(P)
Where P = (Poly, y, ◁) is the polynomial monoidal category.
Cat# is the double category of:
Comod(Set, 1, ×) ≅ Span
↓
Mod(Span) ≅ Prof
| Home | Structure | Lives In |
|---|---|---|
| Span | Comodules in cartesian | Cat# linears |
| Prof | Modules over spans | Cat# bimodules |
| Presheaves | Right modules | Cat# cofunctors |
Kan Extensions says: Lan/Ran extend functors universally Cat# says: Not all bicomodules are pointwise computable
Obstruction: When the comma category (K ↓ d) doesn't have colimits:
(Lan_K F)(d) = colim_{(c,f: K(c)→d)} F(c)
↑
This colimit may not exist!
Resolution: Cat# bicomodules ARE the well-behaved migrations.
Kan Extensions says: Adjunctions Lan ⊣ Res ⊣ Ran Cat# says: Module structure requires coherence
Obstruction: The pentagon and triangle identities may fail:
(a ◁ b) ◁ c ≠ a ◁ (b ◁ c) when associator not natural
Resolution: Cat# enforces coherence via equipment structure.
Kan Extensions says: Profunctors = Ran-induced Cat# says: Not all horizontal morphisms are representable
Obstruction: A profunctor P: C ↛ D may not factor through Yoneda:
P ≠ Hom_D(F(-), G(-)) for any F, G
Resolution: Cat# includes non-representable bicomodules explicitly.
# Core Cat# triad
temporal-coalgebra (-1) ⊗ catsharp (0) ⊗ free-monad-gen (+1) = 0 ✓
# Mac Lane universal triad
yoneda-directed (-1) ⊗ kan-extensions (0) ⊗ oapply-colimit (+1) = 0 ✓
# Bicomodule decomposition
structured-decomp (-1) ⊗ catsharp (0) ⊗ operad-compose (+1) = 0 ✓
# Three Homes
sheaf-cohomology (-1) ⊗ catsharp (0) ⊗ topos-generate (+1) = 0 ✓
| Direction | Neighbor | Relationship |
|---|---|---|
| Left (-1) | kan-extensions | Universal property source |
| Right (+1) | operad-compose | Composition target |
"The notion of Kan extension subsumes all the other fundamental concepts of category theory."
"Cat# provides the HOME for all these structures."
Kan Extensions
↓
"What are the universal maps?"
↓
Cat# = Comod(P)
↓
"Where do they live and compose?"
↓
Equipment Structure
Key insight: Kan extensions answer "what", Cat# answers "where".
# Query Cat# concepts
just catsharp-query polynomial
# Show timeline
just catsharp-timeline
# Find polynomial patterns
just catsharp-poly
# Bridge to Kan extensions
just catsharp-kan-bridge
-- Slides with Cat# definitions
SELECT * FROM v_catsharp_definitions;
-- Polynomial operations
SELECT * FROM v_catsharp_poly_patterns;
-- Skill tensor product
SELECT * FROM catsharp_complete_index
WHERE skills LIKE '%kan%';
All 138 skills are mapped to Cat# structure via:
Skill Trit → Cat# Structure:
┌────────┬─────────────┬──────────┬───────────────┬────────────┐
│ Trit │ Poly Op │ Kan Role │ Structure │ Home │
├────────┼─────────────┼──────────┼───────────────┼────────────┤
│ -1 │ × (prod) │ Ran_K │ cofree t_p │ Span │
│ 0 │ ⊗ (para) │ Adj │ bicomodule │ Prof │
│ +1 │ ◁ (subst) │ Lan_K │ free m_p │ Presheaves │
└────────┴─────────────┴──────────┴───────────────┴────────────┘
-- Complete mapping
SELECT * FROM v_catsharp_acset_master;
-- Skill triads as bicomodule chains
SELECT * FROM v_catsharp_skill_bridge;
-- Three Homes distribution
SELECT * FROM v_catsharp_three_homes;
-- GF(3) balance status
SELECT * FROM v_catsharp_gf3_status;
GF(3) conservation IS the naturality condition of Cat# equipment:
For a triad (s₋₁, s₀, s₊₁):
Ran_K(s₋₁) →[bicomodule]→ s₀ →[bicomodule]→ Lan_K(s₊₁)
The commuting square:
G(f) ∘ η_A = η_B ∘ F(f)
Becomes the GF(3) equation:
(-1) + (0) + (+1) ≡ 0 (mod 3)
kan-extensions — Universal property formulationasi-polynomial-operads — Full polynomial functor theoryoperad-compose — Operadic compositionstructured-decomp — Bumpus tree decompositionsacsets — ACSet schema and navigation