Cognitive superposition synthesizing Riehl (∞-categories), Sutskever (compression), Schmidhuber (curiosity-driven), and Bengio (GFlowNets) into unified ASI framework with quantum-inspired measurement collapse.
/plugin marketplace add plurigrid/asi/plugin install plurigrid-asi-skills@plurigrid/asiThis skill inherits all available tools. When active, it can use any tool Claude has access to.
"The state of holding multiple expert perspectives simultaneously, collapsing to specific skills only upon measurement."
Cognitive Superposition is a meta-skill that enables:
┌─────────────────────────────────────────────────────────────────────────────┐
│ COGNITIVE SUPERPOSITION |ψ⟩ │
│ │
│ |ψ⟩ = α|Riehl⟩ + β|Sutskever⟩ + γ|Schmidhuber⟩ + δ|Bengio⟩ │
│ │
│ where |α|² + |β|² + |γ|² + |δ|² = 1 (normalization) │
└─────────────────────────────────────────────────────────────────────────────┘
┌──────────────────┬──────────────────┬──────────────────┬──────────────────┐
│ Emily Riehl │ Ilya Sutskever │ Jürgen │ Yoshua Bengio │
│ (-1, Validator)│ (+1, Generator) │ Schmidhuber │ (0, Coordinator)│
│ │ │ (+1, Generator)│ │
├──────────────────┼──────────────────┼──────────────────┼──────────────────┤
│ Synthetic ∞-cats │ Compression= │ Curiosity- │ GFlowNets for │
│ Segal/Rezk types │ Intelligence │ driven learning │ causal discovery │
│ Directed HoTT │ Scaling laws │ Gödel machines │ System 2 + slow │
│ Covariant fibers │ Self-organizing │ Self-improving │ World models │
├──────────────────┼──────────────────┼──────────────────┼──────────────────┤
│ Color: Blue │ Color: Red │ Color: Red │ Color: Green │
│ #2626D8 │ #D82626 │ #D82626 │ #26D826 │
└──────────────────┴──────────────────┴──────────────────┴──────────────────┘
# Core Cognitive Superposition Triads
# Riehl-Sutskever-Bengio (RSB)
segal-types (-1) ⊗ cognitive-superposition (0) ⊗ information-capacity (+1) = 0 ✓
# Schmidhuber-Bengio-Riehl (SBR)
yoneda-directed (-1) ⊗ cognitive-superposition (0) ⊗ curiosity-driven (+1) = 0 ✓
# Self-Improvement Triad
kolmogorov-compression (-1) ⊗ cognitive-superposition (0) ⊗ godel-machine (+1) = 0 ✓
# Causal-Categorical Triad
sheaf-cohomology (-1) ⊗ cognitive-superposition (0) ⊗ gflownet (+1) = 0 ✓
# Emergence Triad
persistent-homology (-1) ⊗ cognitive-superposition (0) ⊗ emergence-laws (+1) = 0 ✓
"The dependent Yoneda lemma is a directed analogue of path induction."
#lang rzk-1
-- Cognitive state as Segal type
#define CognitiveState : U := Segal-type
-- Perspective morphism
#define perspective (S : CognitiveState) (p1 p2 : Perspective) : U
:= hom S p1 p2
-- Superposition: composite of perspectives
#define superpose (S : CognitiveState) (p1 p2 p3 p4 : Perspective)
: Σ (h : hom S p1 p4), composite-witness
:= segal-composition S p1 p2 p3 p4
Key Skills:
segal-types: Composites exist uniquely (coherent cognition)rezk-types: Isomorphic perspectives = same perspectivedirected-interval: Time-directed reasoning (irreversibility)covariant-fibrations: Context-dependent meaning transportyoneda-directed: Prove properties by checking at identity"Compression and prediction are two sides of the same coin. This is intelligence."
class SutskeverCompression:
"""
Kolmogorov complexity as intelligence measure.
Shorter description = better understanding.
"""
def compress(self, cognitive_state: CognitiveState) -> str:
"""
Find shortest program that generates state.
Intelligence = len(shortest_program) / len(raw_data)
Lower ratio = higher intelligence.
"""
# Use LLM to generate code
program = self.llm.generate(
f"Generate shortest Python program that outputs: {cognitive_state}"
)
return program
def predict(self, history: List[CognitiveState]) -> CognitiveState:
"""
Solomonoff induction: optimal Bayesian prediction.
P(next | history) = Σ_p 2^{-len(p)} × p(history → next)
"""
return self.solomonoff_weighted_prediction(history)
def information_capacity(self, model) -> float:
"""
Bits compressed per FLOP.
Higher = more efficient use of compute.
"""
return self.bits_per_token / self.flops_per_token
Key Skills:
kolmogorov-compression: Shortest program = best understandingsolomonoff-induction: Universal prior over programsinformation-capacity: Efficiency metric (bits/FLOP)emergence-laws: Predict when capabilities emerge"Intelligence is compression progress. Curiosity seeks compressibility."
class SchmidhuberCuriosity:
"""
Intrinsic motivation via compression progress.
Curiosity reward = improvement in compression ability.
"""
def __init__(self, world_model: nn.Module, compressor: nn.Module):
self.world_model = world_model
self.compressor = compressor
self.compression_history = []
def compression_progress(self, observation: Tensor) -> float:
"""
Curiosity = how much better we compress after seeing this.
reward = L(t-1) - L(t) where L = description length
"""
# Compress before learning
len_before = self.compressor.description_length(observation)
# Update world model
self.world_model.update(observation)
# Compress after learning
len_after = self.compressor.description_length(observation)
# Progress = reduction in description length
progress = len_before - len_after
self.compression_history.append(progress)
return progress
def explore(self) -> Action:
"""
Seek states that maximize expected compression progress.
This is the Schmidhuber formulation of curiosity.
"""
best_action = None
best_expected_progress = -float('inf')
for action in self.action_space:
predicted_state = self.world_model.predict(action)
expected_progress = self.estimate_learnability(predicted_state)
if expected_progress > best_expected_progress:
best_action = action
best_expected_progress = expected_progress
return best_action
class GodelMachine:
"""
Self-improving system that proves its own improvements.
Can rewrite any part of itself if it can prove the rewrite
is beneficial according to its utility function.
"""
def __init__(self, initial_policy: str, prover: TheoremProver):
self.policy = initial_policy
self.prover = prover
self.utility_function = self.define_utility()
def attempt_self_improvement(self) -> Optional[str]:
"""
Search for provably beneficial self-modifications.
The key constraint: must PROVE improvement, not just hope.
"""
for candidate_policy in self.enumerate_policies():
# Attempt to prove: candidate is better than current
theorem = f"U(candidate_policy) > U(self.policy)"
if self.prover.prove(theorem):
# Provably better! Replace self.
self.policy = candidate_policy
return candidate_policy
return None # No provable improvement found
def darwin_godel_machine(self) -> "Agent":
"""
Combine evolution + formal proofs.
Archive of agents, mutate with LLM, evaluate on benchmarks,
keep if fitness improves.
"""
archive = [self]
while True:
parent = self.sample_from_archive(archive)
child = self.llm_mutate(parent)
fitness = self.evaluate(child)
if self.is_novel(child) and fitness > 0:
archive.append(child)
return max(archive, key=lambda a: a.fitness)
Key Skills:
curiosity-driven: Compression progress as rewardgodel-machine: Self-proving self-improvementself-evolving-agent: Darwin + Gödel machine hybridcompression-progress: Intrinsic motivation metric"Sample proportional to reward, not just maximize. Explore the full space of good solutions."
class BengioGFlowNet:
"""
Generative Flow Networks: sample proportionally to reward.
Unlike RL (maximize), GFlowNets sample x with P(x) ∝ R(x).
This gives diversity + coverage of solution space.
"""
def __init__(self, forward_policy: nn.Module, backward_policy: nn.Module):
self.P_F = forward_policy # Forward transition
self.P_B = backward_policy # Backward transition
self.Z = nn.Parameter(torch.tensor(1.0)) # Partition function
def sample(self) -> State:
"""
Sample terminal state x with P(x) ∝ R(x).
Build up state step by step via forward policy.
"""
state = self.initial_state()
trajectory = [state]
while not self.is_terminal(state):
action = self.P_F.sample(state)
state = self.transition(state, action)
trajectory.append(state)
return state, trajectory
def trajectory_balance_loss(self, trajectory: List[State], reward: float) -> Tensor:
"""
Trajectory Balance: core GFlowNet training objective.
Z × Π_t P_F(s_t → s_{t+1}) = R(x) × Π_t P_B(s_{t+1} → s_t)
In log space:
log Z + Σ log P_F = log R + Σ log P_B
"""
log_forward = sum(self.P_F.log_prob(s, s_next)
for s, s_next in zip(trajectory[:-1], trajectory[1:]))
log_backward = sum(self.P_B.log_prob(s_next, s)
for s, s_next in zip(trajectory[:-1], trajectory[1:]))
# Trajectory balance condition
lhs = torch.log(self.Z) + log_forward
rhs = torch.log(reward) + log_backward
return (lhs - rhs) ** 2 # Minimize squared difference
class BengioCausalInference:
"""
System 2 deep learning: slow, deliberate, causal reasoning.
Bengio's vision: combine System 1 (fast neural) with
System 2 (slow, compositional, causal).
"""
def __init__(self, system1: nn.Module, causal_graph: CausalGraph):
self.fast = system1 # Intuitive pattern matching
self.slow = causal_graph # Deliberate causal reasoning
def reason(self, query: str) -> Answer:
"""
Two-system reasoning:
1. Fast: pattern match to candidates
2. Slow: verify via causal intervention
"""
# System 1: quick candidates
candidates = self.fast.generate(query)
# System 2: verify causally
for candidate in candidates:
# Intervene and check consistency
if self.slow.consistent_with_interventions(candidate):
return candidate
# Fall back to pure System 2
return self.slow.abductive_inference(query)
def world_model(self) -> WorldModel:
"""
Bengio's world model: learned causal structure.
Agents need world models for planning, counterfactuals,
and transfer to new situations.
"""
return WorldModel(
causal_structure=self.slow,
neural_dynamics=self.fast,
planning_horizon=100
)
Key Skills:
gflownet: Sample ∝ reward (diversity over maximization)causal-inference: Interventional reasoningsystem2-attention: Slow, deliberate, compositionalworld-models: Learned causal dynamicsWhen the superposition is measured (task context), it collapses:
class CognitiveSuperposition:
"""
Superposition of four ASI perspectives.
"""
def __init__(self):
self.perspectives = {
'riehl': RiehlPerspective(), # ∞-categories
'sutskever': SutskeverPerspective(), # compression
'schmidhuber': SchmidhuberPerspective(), # curiosity
'bengio': BengioPerspective() # GFlowNets
}
self.amplitudes = {'riehl': 0.5, 'sutskever': 0.5,
'schmidhuber': 0.5, 'bengio': 0.5}
def collapse(self, measurement: str) -> "ConcreteSkill":
"""
Collapse superposition based on task context.
measurement types:
- 'verify': collapses to Riehl (∞-categorical proof)
- 'compress': collapses to Sutskever (shortest description)
- 'explore': collapses to Schmidhuber (curiosity)
- 'sample': collapses to Bengio (GFlowNet diversity)
- 'integrate': keeps superposition (all perspectives)
"""
if measurement == 'verify':
return self.perspectives['riehl'].activate()
elif measurement == 'compress':
return self.perspectives['sutskever'].activate()
elif measurement == 'explore':
return self.perspectives['schmidhuber'].activate()
elif measurement == 'sample':
return self.perspectives['bengio'].activate()
else:
# Full superposition: weighted combination
return self.integrate_all()
def integrate_all(self) -> "IntegratedSkill":
"""
Maintain superposition: use all perspectives.
This is the GF(3) balanced state:
Riehl(-1) + Sutskever(+1) + Schmidhuber(+1) + Bengio(0) = +1
Need to add one more MINUS to balance...
So we pair with sheaf-cohomology(-1) or persistent-homology(-1)
"""
return IntegratedSkill(
verify=self.perspectives['riehl'],
compress=self.perspectives['sutskever'],
explore=self.perspectives['schmidhuber'],
sample=self.perspectives['bengio'],
coherence=self.compute_coherence()
)
# Ruby integration for Music Topos
module CognitiveSuperposition
PERSPECTIVES = {
riehl: { trit: -1, domain: 'synthetic-infinity-categories' },
sutskever: { trit: 1, domain: 'compression-intelligence' },
schmidhuber: { trit: 1, domain: 'curiosity-compression' },
bengio: { trit: 0, domain: 'gflownet-causality' }
}
def self.superpose(content)
seed = Digest::SHA256.hexdigest(content)[0..15].to_i(16)
gen = SplitMixTernary::Generator.new(seed)
# Generate amplitude for each perspective
amplitudes = PERSPECTIVES.keys.map do |p|
[p, gen.next_float]
end.to_h
# Normalize
total = amplitudes.values.sum
amplitudes.transform_values! { |v| v / total }
{
content: content,
seed: seed,
amplitudes: amplitudes,
dominant: amplitudes.max_by { |_, v| v }.first
}
end
def self.collapse(superposition, measurement)
case measurement
when :verify
{ perspective: :riehl, skill: 'segal-types', trit: -1 }
when :compress
{ perspective: :sutskever, skill: 'kolmogorov-compression', trit: 1 }
when :explore
{ perspective: :schmidhuber, skill: 'curiosity-driven', trit: 1 }
when :sample
{ perspective: :bengio, skill: 'gflownet', trit: 0 }
else
{ perspective: :integrated, skill: 'cognitive-superposition', trit: 0 }
end
end
end
using Catlab.CategoricalAlgebra
@present SchCognitiveSuperposition(FreeSchema) begin
# Objects
Perspective::Ob
Skill::Ob
Measurement::Ob
# Morphisms
activates::Hom(Measurement, Perspective)
uses::Hom(Perspective, Skill)
# Attribute types
Amplitude::AttrType
Trit::AttrType
Domain::AttrType
# Attributes
amplitude::Attr(Perspective, Amplitude)
trit::Attr(Perspective, Trit)
domain::Attr(Perspective, Domain)
end
@acset_type CognitiveSuperpositionGraph(SchCognitiveSuperposition)
function create_superposition()
cs = CognitiveSuperpositionGraph()
# Add perspectives
riehl = add_part!(cs, :Perspective, amplitude=0.25, trit=-1, domain="∞-cats")
sutskever = add_part!(cs, :Perspective, amplitude=0.25, trit=1, domain="compression")
schmidhuber = add_part!(cs, :Perspective, amplitude=0.25, trit=1, domain="curiosity")
bengio = add_part!(cs, :Perspective, amplitude=0.25, trit=0, domain="gflownet")
# Add measurements
verify = add_part!(cs, :Measurement)
compress = add_part!(cs, :Measurement)
explore = add_part!(cs, :Measurement)
sample = add_part!(cs, :Measurement)
# Connect measurements to perspectives
set_subpart!(cs, verify, :activates, riehl)
set_subpart!(cs, compress, :activates, sutskever)
set_subpart!(cs, explore, :activates, schmidhuber)
set_subpart!(cs, sample, :activates, bengio)
cs
end
flowchart TB
subgraph "Cognitive Superposition |ψ⟩"
R["Emily Riehl<br/>∞-Categories<br/>trit: -1"]
S["Ilya Sutskever<br/>Compression<br/>trit: +1"]
J["Jürgen Schmidhuber<br/>Curiosity<br/>trit: +1"]
B["Yoshua Bengio<br/>GFlowNets<br/>trit: 0"]
R -.->|"amplitude α"| Super(("|ψ⟩"))
S -.->|"amplitude β"| Super
J -.->|"amplitude γ"| Super
B -.->|"amplitude δ"| Super
style R fill:#2626D8,stroke:#fff,color:#fff
style S fill:#D82626,stroke:#fff,color:#fff
style J fill:#D82626,stroke:#fff,color:#fff
style B fill:#26D826,stroke:#fff,color:#fff
style Super fill:#000,stroke:#fff,color:#fff
end
subgraph "Measurement"
M1["verify"]
M2["compress"]
M3["explore"]
M4["sample"]
end
subgraph "Collapsed Skills"
SK1["segal-types"]
SK2["kolmogorov-compression"]
SK3["curiosity-driven"]
SK4["gflownet"]
end
Super -->|"collapse"| M1 --> SK1
Super -->|"collapse"| M2 --> SK2
Super -->|"collapse"| M3 --> SK3
Super -->|"collapse"| M4 --> SK4
# Create superposition from content
just cognitive-superpose "theorem proving with learned tactics"
# Collapse to specific perspective
just cognitive-collapse verify # → Riehl
just cognitive-collapse compress # → Sutskever
just cognitive-collapse explore # → Schmidhuber
just cognitive-collapse sample # → Bengio
# Full integration (maintain superposition)
just cognitive-integrate
# Show GF(3) balanced triads
just cognitive-triads
For perspectives P₁, P₂, P₃, P₄ with amplitudes α, β, γ, δ:
|α|² + |β|² + |γ|² + |δ|² = 1 (normalization)
Given measurement context M and seed s:
collapse(|ψ⟩, M, s) = deterministic skill selection
To maintain balanced superposition:
trit(Riehl) + trit(validator) + trit(cognitive-superposition) = 0
⟹ -1 + (-1) + 0 = -2 ≢ 0 # Need balancing!
Fixed: Add generator (+1) to complete triad
sheaf-cohomology(-1) ⊗ cognitive-superposition(0) ⊗ gflownet(+1) = 0 ✓
The Cognitive Superposition Principle:
Hold all valid perspectives simultaneously. Collapse only when task demands it. Maintain GF(3) conservation throughout.
This enables ASI that is simultaneously: