```yaml name: cognitive-surrogate description: Layer 6 Barton Cognitive Surrogate System - build, train, and validate psychological models that predict and generate authentic responses matching a subject's cognitive patterns version: 1.0.0 trit: 0 # Ergodic/coordinator role in GF(3) triadic system ```
/plugin marketplace add plurigrid/asi/plugin install plurigrid-asi-skills@plurigrid/asiThis skill inherits all available tools. When active, it can use any tool Claude has access to.
name: cognitive-surrogate
description: Layer 6 Barton Cognitive Surrogate System - build, train, and validate psychological models that predict and generate authentic responses matching a subject's cognitive patterns
version: 1.0.0
trit: 0 # Ergodic/coordinator role in GF(3) triadic system
The Cognitive Surrogate skill enables construction of high-fidelity psychological models from interaction patterns. It extracts values, predicts intellectual trajectories, and generates authentic responses that preserve the subject's voice with >90% fidelity.
Core Principle: A surrogate is not an imitation but a derivational continuation - the model learns the generative grammar of cognition, not surface patterns.
NEW (Langevin/Gibbs Integration): Predictions now use Gibbs distribution from Langevin analysis. Confidence scores reflect mixing time and temperature parameters.
Extract structured psychological profile from interaction corpus:
profile = build_psychological_profile(
corpus=[threads, emails, writings],
dimensions=[
"values", # Core beliefs, ethical framework
"interests", # Topic affinities, curiosity patterns
"communication", # Tone, formality, humor markers
"reasoning", # Deductive vs intuitive, uncertainty handling
"social", # Collaboration style, conflict patterns
],
seed=gay_seed # Deterministic via gay-mcp
)
Output ACSets Schema:
@present SchProfile(FreeSchema) begin
Value::Ob; Interest::Ob; Pattern::Ob
name::Attr(Value, String)
weight::Attr(Value, Float64)
topic::Attr(Interest, String)
frequency::Attr(Interest, Int)
exemplar::Attr(Pattern, String)
end
Train next-topic and next-response predictors:
predictor = train_predictor(
profile=profile,
corpus=corpus,
model_type="markov_transformer", # or "hmm", "lstm", "gpt_finetune"
context_window=8, # conversation turns
validation_split=0.15
)
# Predict likely next topics given conversation state
next_topics = predictor.predict_topics(
context=current_thread,
top_k=5,
temperature=0.7
)
Measure surrogate fidelity against held-out data:
fidelity = validate_fidelity(
surrogate=predictor,
test_corpus=held_out_threads,
metrics=[
"topic_prediction_accuracy", # Target: >0.85
"response_semantic_sim", # Target: >0.90
"style_consistency", # Target: >0.88
"value_alignment", # Target: >0.92
],
threshold=0.90 # Overall fidelity threshold
)
assert fidelity.overall >= 0.90, f"Fidelity {fidelity.overall} below threshold"
Fidelity Report:
┌─────────────────────────┬────────┬────────┐
│ Metric │ Score │ Target │
├─────────────────────────┼────────┼────────┤
│ topic_prediction │ 0.87 │ 0.85 │
│ semantic_similarity │ 0.91 │ 0.90 │
│ style_consistency │ 0.89 │ 0.88 │
│ value_alignment │ 0.94 │ 0.92 │
├─────────────────────────┼────────┼────────┤
│ OVERALL │ 0.9025 │ 0.90 │
└─────────────────────────┴────────┴────────┘
Generate text matching subject's voice:
reply = generate_authentic_reply(
surrogate=predictor,
context=conversation_history,
prompt=incoming_message,
constraints={
"max_tokens": 500,
"preserve_uncertainty": True, # Don't overclaim knowledge
"style_lock": True, # Enforce style consistency
},
gay_seed=thread_seed # Reproducible generation
)
# Reply includes confidence and divergence markers
print(reply.text)
print(f"Confidence: {reply.confidence}")
print(f"Style divergence: {reply.style_delta}")
Use Gibbs distribution from Langevin dynamics for predictions:
# Instead of generic pattern matching
# Use p(pattern | θ) ∝ exp(-L(θ)/T) from Langevin
prediction = gibbs_based_prediction(
state=current_state,
temperature=0.01, # From Langevin analysis
loss_fn=pattern_energy,
mixing_time=500 # Estimated convergence time
)
# Adaptive confidence based on equilibration
confidence = estimate_equilibrium(
steps_so_far=n,
mixing_time=tau_mix,
temperature=T
)
# Returns:
# - prediction: Most likely next state
# - confidence: P(equilibrium reached)
# - temperature_influence: How much T affected prediction
Predict intellectual/professional trajectory:
trajectory = project_trajectory(
profile=profile,
horizon="6_months",
dimensions=[
"research_interests",
"skill_acquisition",
"collaboration_patterns",
"publication_topics",
],
monte_carlo_samples=1000,
seed=gay_seed
)
# Returns probability distributions over future states
for dim, distribution in trajectory.items():
print(f"{dim}: {distribution.mode} (p={distribution.confidence:.2f})")
All stochastic operations use gay-mcp deterministic seeding:
from gay_mcp import GaySeed, derive_color
# Create reproducible surrogate session
session_seed = GaySeed.from_thread(thread_id)
profile_color = derive_color(session_seed, "profile") # trit=0
training_color = derive_color(session_seed, "train") # trit=1
validation_color = derive_color(session_seed, "valid") # trit=2
# GF(3) conservation: 0 + 1 + 2 ≡ 0 (mod 3)
assert (profile_color.trit + training_color.trit + validation_color.trit) % 3 == 0
Profile data stored as attributed C-sets:
using ACSets
# Define cognitive schema
@acset_type CognitiveProfile(SchProfile)
# Populate from extraction
profile = CognitiveProfile()
add_part!(profile, :Value, name="intellectual_honesty", weight=0.95)
add_part!(profile, :Interest, topic="category_theory", frequency=47)
add_part!(profile, :Pattern, exemplar="tends to use analogies from music")
# Query patterns
high_values = incident(profile, x -> x.weight > 0.8, :Value)
| Component | Trit | Role |
|---|---|---|
| cognitive-surrogate | 0 | Coordinator/ergodic - orchestrates profile building |
| gay-mcp | 1 | Generator - provides deterministic randomness |
| acsets | 2 | Storage - structured data persistence |
Conservation: 0 + 1 + 2 ≡ 0 (mod 3) — closed triadic system.
# Complete surrogate construction workflow
from cognitive_surrogate import (
build_psychological_profile,
train_predictor,
validate_fidelity,
generate_authentic_reply,
project_trajectory
)
from gay_mcp import GaySeed
# Initialize with deterministic seed
seed = GaySeed.from_string("barton_surrogate_v1")
# 1. Build profile from corpus
profile = build_psychological_profile(
corpus=load_interaction_corpus("barton_threads/"),
seed=seed
)
# 2. Train predictor
predictor = train_predictor(profile, model_type="markov_transformer")
# 3. Validate fidelity
fidelity = validate_fidelity(predictor, test_corpus, threshold=0.90)
print(f"Fidelity: {fidelity.overall:.2%}")
# 4. Generate replies
reply = generate_authentic_reply(
predictor,
context=current_conversation,
prompt="What do you think about applying category theory to social systems?"
)
# 5. Project trajectory
trajectory = project_trajectory(profile, horizon="1_year")
print(f"Predicted focus: {trajectory['research_interests'].mode}")
skills/cognitive-surrogate/
├── SKILL.md # This file
├── src/
│ ├── profile_builder.py # Psychological extraction
│ ├── predictor.py # Training and prediction
│ ├── fidelity.py # Validation metrics
│ ├── generator.py # Authentic reply generation
│ └── trajectory.py # Future projection
├── schemas/
│ └── cognitive_acset.jl # ACSets schema definitions
└── tests/
└── test_fidelity.py # >90% threshold tests