Elements of ∞-Category Theory (Riehl-Verity) for foundational ∞-categorical constructions and model-independence.
/plugin marketplace add plurigrid/asi/plugin install plurigrid-asi-skills@plurigrid/asiThis skill inherits all available tools. When active, it can use any tool Claude has access to.
Status: ✅ Production Ready Trit: 0 (ERGODIC - coordinator) Color: #26D826 (Green) Principle: ∞-categories via model-independent axioms Frame: Riehl-Verity ∞-cosmos formalism
Elements of ∞-Category Theory provides model-independent foundations for ∞-categories. Rather than committing to quasi-categories, complete Segal spaces, or another model, the ∞-cosmos framework captures the common structure.
∞-cosmos K has:
- Objects: ∞-categories
- Mapping spaces: Kan complexes Map_K(A, B)
- Isofibrations: p : E ↠ B with lift property
- Comma objects: A/f for f : A → B
class InfinityCosmos k where
type Ob k :: Type
mapping :: Ob k → Ob k → KanComplex
isofibration :: (e : Ob k) → (b : Ob k) → Prop
comma :: {a b : Ob k} → (f : Map a b) → Ob k
-- Core axioms of an ∞-cosmos
record ∞-Cosmos : Type₁ where
field
Ob : Type
Hom : Ob → Ob → KanComplex
id : (A : Ob) → Hom A A
_∘_ : Hom B C → Hom A B → Hom A C
-- Limits
terminal : Ob
product : Ob → Ob → Ob
pullback : {A B C : Ob} → Hom A C → Hom B C → Ob
-- Isofibrations
isofib : {E B : Ob} → Hom E B → Prop
factorization : (f : Hom A B) →
Σ E, Σ (p : Hom E B), isofib p × trivial-cofib(A → E)
-- Comma construction
comma : {K : ∞-Cosmos} {A B C : K.Ob}
→ K.Hom A C → K.Hom B C → K.Ob
comma f g = pullback (mapping-isofib A C f) (ev₀ : C^𝟚 → C)
×_{C} pullback (mapping-isofib B C g) (ev₁ : C^𝟚 → C)
-- Slice as comma
slice : {K : ∞-Cosmos} (B : K.Ob) (b : pt → B) → K.Ob
slice B b = comma (id B) b
-- Model-independent adjunction
record Adjunction (L : Hom A B) (R : Hom B A) : Type where
field
unit : id A ⇒ R ∘ L
counit : L ∘ R ⇒ id B
triangle-L : (counit ∘ L) ∘ (L ∘ unit) ≡ id L
triangle-R : (R ∘ counit) ∘ (unit ∘ R) ≡ id R
# Verify ∞-cosmos axioms
just infinity-cosmos-check structure.rzk
# Compute comma construction
just comma-category f.rzk g.rzk
# Check adjunction conditions
just adjunction-verify L.rzk R.rzk
yoneda-directed (-1) ⊗ elements-infinity-cats (0) ⊗ synthetic-adjunctions (+1) = 0 ✓ [Yoneda-Adjunction]
covariant-fibrations (-1) ⊗ elements-infinity-cats (0) ⊗ rezk-types (+1) = 0 ✓ [Model Transport]
Skill Name: elements-infinity-cats Type: ∞-Cosmos Coordinator Trit: 0 (ERGODIC) Color: #26D826 (Green)