Propagator-based parallel structure for exploiting knowledge differentials across domains using local scoped propagators and SplitMixTernary RNG.
/plugin marketplace add plurigrid/asi/plugin install plurigrid-asi-skills@plurigrid/asiThis skill inherits all available tools. When active, it can use any tool Claude has access to.
Epistemic arbitrage exploits knowledge differentials between domains. When concept A in domain X is well-understood, but its isomorphic counterpart A' in domain Y is mysterious, we can arbitrage by transferring understanding.
A propagator network consists of:
┌─────────┐ ┌─────────────┐ ┌─────────┐
│ Cell A │────▶│ Propagator │────▶│ Cell B │
│ (known) │ │ (transfer) │ │(derived)│
└─────────┘ └─────────────┘ └─────────┘
For parallel propagation with determinism:
class SplitMixTernary
GOLDEN = 0x9e3779b97f4a7c15 # Golden ratio constant
def initialize(seed)
@state = seed
end
def next_ternary
# Advance state (SplitMix64)
@state = (@state + GOLDEN) & 0xFFFFFFFFFFFFFFFF
z = @state
z = ((z ^ (z >> 30)) * 0xbf58476d1ce4e5b9) & 0xFFFFFFFFFFFFFFFF
z = ((z ^ (z >> 27)) * 0x94d049bb133111eb) & 0xFFFFFFFFFFFFFFFF
z = z ^ (z >> 31)
# Map to ternary: -1, 0, +1
(z % 3) - 1
end
def split(index)
# Create independent child stream
child_seed = @state ^ (index * GOLDEN)
SplitMixTernary.new(child_seed)
end
end
# Knowledge in domain A
cell_a = Cell.new(:music, :circle_of_fifths)
cell_a.add_info(:structure, :cyclic_group_12)
cell_a.add_info(:generator, :perfect_fifth)
# Unknown in domain B
cell_b = Cell.new(:number_theory, :modular_arithmetic)
# Propagator transfers structure
propagator = Propagator.new(:domain_transfer) do |source, target|
if source.has?(:structure)
target.merge(:structure, source.get(:structure))
target.merge(:insight, "Z/12Z isomorphic to circle of fifths")
end
end
propagator.connect(cell_a, cell_b)
propagator.fire!
# Known: Fourier transform on functions
cell_time = Cell.new(:analysis, :time_domain)
cell_freq = Cell.new(:analysis, :frequency_domain)
# Propagator: Fourier duality
duality_propagator = Propagator.new(:fourier_duality) do |time, freq|
time.each_property do |prop, val|
dual_prop = fourier_dual(prop) # convolution ↔ multiplication, etc.
freq.merge(dual_prop, val)
end
end
When three domains have pairwise connections, exploit the triangle:
# Three domains with partial knowledge
cell_math = Cell.new(:mathematics, :group_theory)
cell_music = Cell.new(:music, :harmony)
cell_physics = Cell.new(:physics, :symmetry)
# Pairwise propagators
math_music = Propagator.new(:pitch_class_groups)
music_physics = Propagator.new(:overtone_series)
physics_math = Propagator.new(:lie_groups)
# Triangle inequality enables arbitrage:
# d(math, physics) ≤ d(math, music) + d(music, physics)
#
# If direct math→physics is hard, go via music!
Each propagator runs in a local scope with:
class ScopedPropagator
def initialize(name, rng_seed, &block)
@name = name
@rng = SplitMixTernary.new(rng_seed)
@block = block
@local_cells = {}
end
def fork(n)
# Create n parallel scopes with independent RNG streams
n.times.map do |i|
child_rng = @rng.split(i)
ScopedPropagator.new("#{@name}/#{i}", child_rng.state, &@block)
end
end
def run(inputs)
# Execute in isolated scope
@local_cells = inputs.dup
@block.call(self, @local_cells)
@local_cells
end
end
# Master network
network = ArbitrageNetwork.new(seed: 1069)
# Add cells for each domain
network.add_cell(:category_theory, knowledge: 0.9)
network.add_cell(:music_theory, knowledge: 0.7)
network.add_cell(:physics, knowledge: 0.5)
network.add_cell(:philosophy, knowledge: 0.3)
# Add arbitrage propagators
network.add_propagator(:category_to_music, [:category_theory], [:music_theory])
network.add_propagator(:music_to_physics, [:music_theory], [:physics])
network.add_propagator(:physics_to_philosophy, [:physics], [:philosophy])
# Run in parallel (SPI-compliant)
results = network.run_parallel(n_workers: 4)
# Each mathematician is a knowledge source
broadcasters = WorldBroadcast::TripartiteSystem.new([:ramanujan, :grothendieck, :euler])
# Create cells from mathematician expertise
cells = broadcasters.agents.map do |agent|
Cell.new(agent.profile[:domain],
knowledge: agent.history.size,
operations: agent.profile[:operations])
end
# Arbitrage between mathematicians
network = ArbitrageNetwork.from_cells(cells)
network.add_all_pairwise_propagators
network.run!
# Publish arbitrage opportunities
network.on_arbitrage do |source, target, gain|
SynadiaBroadcast.publish("arbitrage.opportunity", {
from: source.domain,
to: target.domain,
knowledge_gain: gain
})
end
# Subscribe to external knowledge
SynadiaBroadcast.subscribe("knowledge.*") do |msg|
domain = msg.subject.split('.').last.to_sym
network.cells[domain].merge(:external, msg.data)
end
# Arbitrage opportunities become game moves
network.on_arbitrage do |source, target, gain|
if gain > threshold
move = GlassBeadGame::Connect.new(
from: Bead.new(source.domain, source.best_concept),
to: Bead.new(target.domain, target.mystery),
via: :epistemic_transfer,
value: gain
)
game.propose_move(move)
end
end
just arbitrage # Run arbitrage network
just arbitrage-domains a b # Arbitrage between specific domains
just propagator-network # Visualize propagator network
just knowledge-flow # Show knowledge flow diagram