Schmidhuber's Gödel Machine: Self-improving systems that prove their own improvements. Darwin Gödel Machine (DGM) combines evolution with formal verification.
/plugin marketplace add plurigrid/asi/plugin install plurigrid-asi-skills@plurigrid/asiThis skill inherits all available tools. When active, it can use any tool Claude has access to.
"A Gödel Machine can rewrite any part of itself, including the learning algorithm, provided it can first prove that the rewrite is beneficial." — Jürgen Schmidhuber
The Gödel Machine is a self-improving system that:
┌─────────────────────────────────────────────────────┐
│ GÖDEL MACHINE │
├─────────────────────────────────────────────────────┤
│ ┌─────────────┐ ┌─────────────┐ │
│ │ Policy │───▶│ Prover │ │
│ │ (current) │ │ (verifier) │ │
│ └─────────────┘ └──────┬──────┘ │
│ ▲ │ │
│ │ ┌──────▼──────┐ │
│ │ │ Candidate │ │
│ │ │ Policy │ │
│ │ └──────┬──────┘ │
│ │ │ │
│ ┌──────┴──────┐ ┌──────▼──────┐ │
│ │ Rewrite │◀────│ Utility │ │
│ │ if proof │ │ Check │ │
│ └─────────────┘ └─────────────┘ │
└─────────────────────────────────────────────────────┘
Combines evolutionary search with formal proofs:
class DarwinGodelMachine:
"""
DGM: Open-ended evolution of self-improving agents.
Archive of agents, LLM-based mutation, fitness evaluation,
keep if novel and beneficial.
"""
def __init__(self, initial_agent: Agent, prover: TheoremProver):
self.archive = [initial_agent]
self.prover = prover
self.generation = 0
def evolve_step(self) -> Agent:
# Sample parent from archive (fitness-proportionate)
parent = self.sample_archive()
# LLM-based mutation
child = self.llm_mutate(parent)
# Evaluate on benchmarks
fitness = self.evaluate(child)
# Optionally: verify improvement formally
if self.prover.can_prove(f"utility({child}) > utility({parent})"):
child.proven = True
# Add if novel and good
if self.is_novel(child) and fitness > 0:
self.archive.append(child)
return child
def llm_mutate(self, agent: Agent) -> Agent:
"""Use LLM to generate improved version."""
prompt = f"""
Current agent code:
{agent.code}
Current fitness: {agent.fitness}
Suggest an improvement to make this agent better.
Return only the improved code.
"""
new_code = self.llm.generate(prompt)
return Agent(code=new_code, generation=self.generation + 1)
# Self-Improvement Triads
kolmogorov-compression (-1) ⊗ cognitive-superposition (0) ⊗ godel-machine (+1) = 0 ✓
proofgeneral-narya (-1) ⊗ self-evolving-agent (0) ⊗ godel-machine (+1) = 0 ✓
sheaf-cohomology (-1) ⊗ epistemic-arbitrage (0) ⊗ godel-machine (+1) = 0 ✓
module GodelMachine
def self.attempt_improvement(current_policy, seed)
gen = SplitMixTernary::Generator.new(seed)
color = gen.next_color
# Generate candidate via color-guided mutation
candidate = mutate(current_policy, color)
# Attempt proof
proof = attempt_prove(candidate, current_policy)
if proof[:success]
{
improved: true,
new_policy: candidate,
proof: proof[:theorem],
trit: 1 # Generator role
}
else
{ improved: false, reason: proof[:failure_reason] }
end
end
end