StructuredDecompositions.jl sheaves on tree decompositions for FPT algorithms with bidirectional navigation
/plugin marketplace add plurigrid/asi/plugin install plurigrid-asi-skills@plurigrid/asiThis skill inherits all available tools. When active, it can use any tool Claude has access to.
Sheaves on tree decompositions with bidirectional navigation
Version: 1.1.0 Trit: 0 (Ergodic - coordinates decomposition)
StrDecomp = Functor d: ∫G → C where:
using StructuredDecompositions
# Create decomposition from graph
d = StrDecomp(graph)
# Access components
bags(d) # Local substructures
adhesions(d) # Overlaps (shared boundaries)
adhesionSpans(d) # Span morphisms
Lifts decision problems to decomposition space:
# Define problem as functor
k_coloring(G) = homomorphisms(G, K_k)
# Lift and solve
solution = 𝐃(k_coloring, decomp, CoDecomposition)
(answer, witness) = decide_sheaf_tree_shape(k_coloring, decomp)
Bidirectional paths for navigating decomposition structures:
using SpecterACSet
# Navigate bags
select([decomp_bags, ALL, acset_parts(:V)], decomp)
# Navigate adhesions with bidirectional transform
transform([decomp_adhesions, ALL],
adh -> reindex_adhesion(adh, mapping),
decomp)
| Navigator | Select | Transform |
|---|---|---|
decomp_bags | All bag ACSets | Update bags |
decomp_adhesions | All adhesion ACSets | Update adhesions |
decomp_spans | Span morphisms | Reindex spans |
adhesion_between(i,j) | Specific adhesion | Update specific |
Runtime: O(f(width) × n) where width = max adhesion size
The sheaf condition ensures local solutions glue to global:
# Sheaf condition: sections over overlaps must agree
function verify_sheaf_condition(decomp, local_solutions)
for (i, j) in adhesion_pairs(decomp)
adh = adhesion(decomp, i, j)
s_i = restrict(local_solutions[i], adh)
s_j = restrict(local_solutions[j], adh)
s_i == s_j || return false
end
return true
end
Serialize decompositions to S-expressions for inspection:
# Decomposition → Sexp
sexp = sexp_of_strdecomp(decomp)
# Navigate sexp representation
bag_names = select([SEXP_CHILDREN, pred(is_bag), SEXP_HEAD, ATOM_VALUE], sexp)
# Roundtrip
decomp2 = strdecomp_of_sexp(GraphType, sexp)
With Gay.jl deterministic coloring:
using Gay
struct ColoredAdhesion
left_bag::ACSet
right_bag::ACSet
adhesion::ACSet
color::String # Deterministic from seed + index
end
function color_decomposition(decomp, seed)
[ColoredAdhesion(
bags(decomp)[i],
bags(decomp)[j],
adhesion(decomp, i, j),
Gay.color_at(seed, idx)
) for (idx, (i, j)) in enumerate(adhesion_pairs(decomp))]
end
dmd-spectral (-1) ⊗ structured-decomp (0) ⊗ koopman-generator (+1) = 0 ✓
sheaf-cohomology (-1) ⊗ structured-decomp (0) ⊗ colimit-reconstruct (+1) = 0 ✓
For DMD/Koopman analysis on decomposed data:
@present SchTimeVaryingDecomp(FreeSchema) begin
Interval::Ob
Snapshot::Ob
State::Ob
timestamp::Hom(Snapshot, Interval)
observable::Hom(Snapshot, State)
Time::AttrType
Value::AttrType
end
# Colimit reconstructs dynamics
# DMD = colimit of snapshot diagram over intervals