Core engineering standards during implementation. Use when implementing features, writing production code, or when user mentions error handling, constants management, progress logging, or code quality standards.
Inherits all available tools
Additional assets for this skill
This skill inherits all available tools. When active, it can use any tool Claude has access to.
references/constants-management.mdreferences/error-handling.mdApply these standards during implementation to ensure consistent, maintainable code.
/itp:go Phase 1| Standard | Rule |
|---|---|
| Errors | Raise + propagate; no fallback/default/retry/silent |
| Constants | Abstract magic numbers into semantic, version-agnostic dynamic constants |
| Dependencies | Prefer OSS libs over custom code; no backward-compatibility needed |
| Progress | Operations >1min: log status every 15-60s |
| Logs | logs/{adr-id}-YYYYMMDD_HHMMSS.log (nohup) |
| Metadata | Optional: catalog-info.yaml for service discovery |
Core Rule: Raise + propagate; no fallback/default/retry/silent
# ✅ Correct - raise with context
def fetch_data(url: str) -> dict:
response = requests.get(url)
if response.status_code != 200:
raise APIError(f"Failed to fetch {url}: {response.status_code}")
return response.json()
# ❌ Wrong - silent catch
try:
result = fetch_data()
except Exception:
pass # Error hidden
See Error Handling Reference for detailed patterns.
Core Rule: Abstract magic numbers into semantic constants
# ✅ Correct - named constant
DEFAULT_API_TIMEOUT_SECONDS = 30
response = requests.get(url, timeout=DEFAULT_API_TIMEOUT_SECONDS)
# ❌ Wrong - magic number
response = requests.get(url, timeout=30)
See Constants Management Reference for patterns.
For operations taking more than 1 minute, log status every 15-60 seconds:
import logging
from datetime import datetime
logger = logging.getLogger(__name__)
def long_operation(items: list) -> None:
total = len(items)
last_log = datetime.now()
for i, item in enumerate(items):
process(item)
# Log every 30 seconds
if (datetime.now() - last_log).seconds >= 30:
logger.info(f"Progress: {i+1}/{total} ({100*(i+1)//total}%)")
last_log = datetime.now()
logger.info(f"Completed: {total} items processed")
Save logs to: logs/{adr-id}-YYYYMMDD_HHMMSS.log
# Running with nohup
nohup python script.py > logs/2025-12-01-my-feature-20251201_143022.log 2>&1 &
| Skill | Purpose |
|---|---|
adr-code-traceability | Add ADR references to code |
code-hardcode-audit | Detect hardcoded values before release |
semantic-release | Version management and release automation |