Lightweight search utility for Toss / Apps-in-Toss llms-full.txt docs, caching sources and ranking snippets with keyword + similarity (Korean-aware) scoring.
This skill inherits all available tools. When active, it can use any tool Claude has access to.
core/docs_search.pycore/korean_similarity.pyrequirements.txtLightweight search utility and usage guide for the Toss / Apps-in-Toss llms-full.txt documents. It retrieves snippets from three sources with simple keyword + similarity scoring.
requirements.txt: Python dependency (requests).skills/docs-search/core/docs_search.py: CLI searcher that downloads and caches llms-full.txt files, then ranks paragraphs.skills/docs-search/core/korean_similarity.py: Korean-aware similarity utilities.python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
python -m core.docs_search -q "Unity WebGL optimization" -k 5
-q / --query: search query (required)-k / --topk: number of results to show (default 5)--refresh-cache: bypass cache and re-download all sources[index] <source URL> - <heading> / score: <score> / snippet<temp>/apps-in-toss/skills/.cache/ (cross-platform: /tmp on Linux/macOS, %TEMP% on Windows).#, ##, etc.) as context.SequenceMatcher similarity; returns top results.llms-full.txt and store under <temp>/apps-in-toss/skills/.cache/ (reuse cache when present).korean_similarity, otherwise SequenceMatcher.from core.docs_search import search
results = search("Unity WebGL optimization", topk=5, refresh=False)
for item in results:
print(item["source"], item["heading"], item["score"])
print(item["snippet"])
requests>=2.31.0 — HTTP 요청 및 llms-full.txt 다운로드