Design effective KPI dashboards with metrics selection, visualization best practices, and real-time monitoring patterns. Use when building business dashboards, selecting metrics, or designing data visualization layouts.
Inherits all available tools
Additional assets for this skill
This skill inherits all available tools. When active, it can use any tool Claude has access to.
Comprehensive patterns for designing effective Key Performance Indicator (KPI) dashboards that drive business decisions.
| Level | Focus | Update Frequency | Audience |
|---|---|---|---|
| Strategic | Long-term goals | Monthly/Quarterly | Executives |
| Tactical | Department goals | Weekly/Monthly | Managers |
| Operational | Day-to-day | Real-time/Daily | Teams |
Specific: Clear definition
Measurable: Quantifiable
Achievable: Realistic targets
Relevant: Aligned to goals
Time-bound: Defined period
├── Executive Summary (1 page)
│ ├── 4-6 headline KPIs
│ ├── Trend indicators
│ └── Key alerts
├── Department Views
│ ├── Sales Dashboard
│ ├── Marketing Dashboard
│ ├── Operations Dashboard
│ └── Finance Dashboard
└── Detailed Drilldowns
├── Individual metrics
└── Root cause analysis
Revenue Metrics:
- Monthly Recurring Revenue (MRR)
- Annual Recurring Revenue (ARR)
- Average Revenue Per User (ARPU)
- Revenue Growth Rate
Pipeline Metrics:
- Sales Pipeline Value
- Win Rate
- Average Deal Size
- Sales Cycle Length
Activity Metrics:
- Calls/Emails per Rep
- Demos Scheduled
- Proposals Sent
- Close Rate
Acquisition:
- Cost Per Acquisition (CPA)
- Customer Acquisition Cost (CAC)
- Lead Volume
- Marketing Qualified Leads (MQL)
Engagement:
- Website Traffic
- Conversion Rate
- Email Open/Click Rate
- Social Engagement
ROI:
- Marketing ROI
- Campaign Performance
- Channel Attribution
- CAC Payback Period
Usage:
- Daily/Monthly Active Users (DAU/MAU)
- Session Duration
- Feature Adoption Rate
- Stickiness (DAU/MAU)
Quality:
- Net Promoter Score (NPS)
- Customer Satisfaction (CSAT)
- Bug/Issue Count
- Time to Resolution
Growth:
- User Growth Rate
- Activation Rate
- Retention Rate
- Churn Rate
Profitability:
- Gross Margin
- Net Profit Margin
- EBITDA
- Operating Margin
Liquidity:
- Current Ratio
- Quick Ratio
- Cash Flow
- Working Capital
Efficiency:
- Revenue per Employee
- Operating Expense Ratio
- Days Sales Outstanding
- Inventory Turnover
┌─────────────────────────────────────────────────────────────┐
│ EXECUTIVE DASHBOARD [Date Range ▼] │
├─────────────┬─────────────┬─────────────┬─────────────────┤
│ REVENUE │ PROFIT │ CUSTOMERS │ NPS SCORE │
│ $2.4M │ $450K │ 12,450 │ 72 │
│ ▲ 12% │ ▲ 8% │ ▲ 15% │ ▲ 5pts │
├─────────────┴─────────────┴─────────────┴─────────────────┤
│ │
│ Revenue Trend │ Revenue by Product │
│ ┌───────────────────────┐ │ ┌──────────────────┐ │
│ │ /\ /\ │ │ │ ████████ 45% │ │
│ │ / \ / \ /\ │ │ │ ██████ 32% │ │
│ │ / \/ \ / \ │ │ │ ████ 18% │ │
│ │ / \/ \ │ │ │ ██ 5% │ │
│ └───────────────────────┘ │ └──────────────────┘ │
│ │
├─────────────────────────────────────────────────────────────┤
│ 🔴 Alert: Churn rate exceeded threshold (>5%) │
│ 🟡 Warning: Support ticket volume 20% above average │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ SAAS METRICS Jan 2024 [Monthly ▼] │
├──────────────────────┬──────────────────────────────────────┤
│ ┌────────────────┐ │ MRR GROWTH │
│ │ MRR │ │ ┌────────────────────────────────┐ │
│ │ $125,000 │ │ │ /── │ │
│ │ ▲ 8% │ │ │ /────/ │ │
│ └────────────────┘ │ │ /────/ │ │
│ ┌────────────────┐ │ │ /────/ │ │
│ │ ARR │ │ │ /────/ │ │
│ │ $1,500,000 │ │ └────────────────────────────────┘ │
│ │ ▲ 15% │ │ J F M A M J J A S O N D │
│ └────────────────┘ │ │
├──────────────────────┼──────────────────────────────────────┤
│ UNIT ECONOMICS │ COHORT RETENTION │
│ │ │
│ CAC: $450 │ Month 1: ████████████████████ 100% │
│ LTV: $2,700 │ Month 3: █████████████████ 85% │
│ LTV/CAC: 6.0x │ Month 6: ████████████████ 80% │
│ │ Month 12: ██████████████ 72% │
│ Payback: 4 months │ │
├──────────────────────┴──────────────────────────────────────┤
│ CHURN ANALYSIS │
│ ┌──────────┬──────────┬──────────┬──────────────────────┐ │
│ │ Gross │ Net │ Logo │ Expansion │ │
│ │ 4.2% │ 1.8% │ 3.1% │ 2.4% │ │
│ └──────────┴──────────┴──────────┴──────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ OPERATIONS CENTER Live ● Last: 10:42:15 │
├────────────────────────────┬────────────────────────────────┤
│ SYSTEM HEALTH │ SERVICE STATUS │
│ ┌──────────────────────┐ │ │
│ │ CPU MEM DISK │ │ ● API Gateway Healthy │
│ │ 45% 72% 58% │ │ ● User Service Healthy │
│ │ ███ ████ ███ │ │ ● Payment Service Degraded │
│ │ ███ ████ ███ │ │ ● Database Healthy │
│ │ ███ ████ ███ │ │ ● Cache Healthy │
│ └──────────────────────┘ │ │
├────────────────────────────┼────────────────────────────────┤
│ REQUEST THROUGHPUT │ ERROR RATE │
│ ┌──────────────────────┐ │ ┌──────────────────────────┐ │
│ │ ▁▂▃▄▅▆▇█▇▆▅▄▃▂▁▂▃▄▅ │ │ │ ▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁ │ │
│ └──────────────────────┘ │ └──────────────────────────┘ │
│ Current: 12,450 req/s │ Current: 0.02% │
│ Peak: 18,200 req/s │ Threshold: 1.0% │
├────────────────────────────┴────────────────────────────────┤
│ RECENT ALERTS │
│ 10:40 🟡 High latency on payment-service (p99 > 500ms) │
│ 10:35 🟢 Resolved: Database connection pool recovered │
│ 10:22 🔴 Payment service circuit breaker tripped │
└─────────────────────────────────────────────────────────────┘
-- Monthly Recurring Revenue (MRR)
WITH mrr_calculation AS (
SELECT
DATE_TRUNC('month', billing_date) AS month,
SUM(
CASE subscription_interval
WHEN 'monthly' THEN amount
WHEN 'yearly' THEN amount / 12
WHEN 'quarterly' THEN amount / 3
END
) AS mrr
FROM subscriptions
WHERE status = 'active'
GROUP BY DATE_TRUNC('month', billing_date)
)
SELECT
month,
mrr,
LAG(mrr) OVER (ORDER BY month) AS prev_mrr,
(mrr - LAG(mrr) OVER (ORDER BY month)) / LAG(mrr) OVER (ORDER BY month) * 100 AS growth_pct
FROM mrr_calculation;
-- Cohort Retention
WITH cohorts AS (
SELECT
user_id,
DATE_TRUNC('month', created_at) AS cohort_month
FROM users
),
activity AS (
SELECT
user_id,
DATE_TRUNC('month', event_date) AS activity_month
FROM user_events
WHERE event_type = 'active_session'
)
SELECT
c.cohort_month,
EXTRACT(MONTH FROM age(a.activity_month, c.cohort_month)) AS months_since_signup,
COUNT(DISTINCT a.user_id) AS active_users,
COUNT(DISTINCT a.user_id)::FLOAT / COUNT(DISTINCT c.user_id) * 100 AS retention_rate
FROM cohorts c
LEFT JOIN activity a ON c.user_id = a.user_id
AND a.activity_month >= c.cohort_month
GROUP BY c.cohort_month, EXTRACT(MONTH FROM age(a.activity_month, c.cohort_month))
ORDER BY c.cohort_month, months_since_signup;
-- Customer Acquisition Cost (CAC)
SELECT
DATE_TRUNC('month', acquired_date) AS month,
SUM(marketing_spend) / NULLIF(COUNT(new_customers), 0) AS cac,
SUM(marketing_spend) AS total_spend,
COUNT(new_customers) AS customers_acquired
FROM (
SELECT
DATE_TRUNC('month', u.created_at) AS acquired_date,
u.id AS new_customers,
m.spend AS marketing_spend
FROM users u
JOIN marketing_spend m ON DATE_TRUNC('month', u.created_at) = m.month
WHERE u.source = 'marketing'
) acquisition
GROUP BY DATE_TRUNC('month', acquired_date);
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
st.set_page_config(page_title="KPI Dashboard", layout="wide")
# Header with date filter
col1, col2 = st.columns([3, 1])
with col1:
st.title("Executive Dashboard")
with col2:
date_range = st.selectbox(
"Period",
["Last 7 Days", "Last 30 Days", "Last Quarter", "YTD"]
)
# KPI Cards
def metric_card(label, value, delta, prefix="", suffix=""):
delta_color = "green" if delta >= 0 else "red"
delta_arrow = "▲" if delta >= 0 else "▼"
st.metric(
label=label,
value=f"{prefix}{value:,.0f}{suffix}",
delta=f"{delta_arrow} {abs(delta):.1f}%"
)
col1, col2, col3, col4 = st.columns(4)
with col1:
metric_card("Revenue", 2400000, 12.5, prefix="$")
with col2:
metric_card("Customers", 12450, 15.2)
with col3:
metric_card("NPS Score", 72, 5.0)
with col4:
metric_card("Churn Rate", 4.2, -0.8, suffix="%")
# Charts
col1, col2 = st.columns(2)
with col1:
st.subheader("Revenue Trend")
revenue_data = pd.DataFrame({
'Month': pd.date_range('2024-01-01', periods=12, freq='M'),
'Revenue': [180000, 195000, 210000, 225000, 240000, 255000,
270000, 285000, 300000, 315000, 330000, 345000]
})
fig = px.line(revenue_data, x='Month', y='Revenue',
line_shape='spline', markers=True)
fig.update_layout(height=300)
st.plotly_chart(fig, use_container_width=True)
with col2:
st.subheader("Revenue by Product")
product_data = pd.DataFrame({
'Product': ['Enterprise', 'Professional', 'Starter', 'Other'],
'Revenue': [45, 32, 18, 5]
})
fig = px.pie(product_data, values='Revenue', names='Product',
hole=0.4)
fig.update_layout(height=300)
st.plotly_chart(fig, use_container_width=True)
# Cohort Heatmap
st.subheader("Cohort Retention")
cohort_data = pd.DataFrame({
'Cohort': ['Jan', 'Feb', 'Mar', 'Apr', 'May'],
'M0': [100, 100, 100, 100, 100],
'M1': [85, 87, 84, 86, 88],
'M2': [78, 80, 76, 79, None],
'M3': [72, 74, 70, None, None],
'M4': [68, 70, None, None, None],
})
fig = go.Figure(data=go.Heatmap(
z=cohort_data.iloc[:, 1:].values,
x=['M0', 'M1', 'M2', 'M3', 'M4'],
y=cohort_data['Cohort'],
colorscale='Blues',
text=cohort_data.iloc[:, 1:].values,
texttemplate='%{text}%',
textfont={"size": 12},
))
fig.update_layout(height=250)
st.plotly_chart(fig, use_container_width=True)
# Alerts Section
st.subheader("Alerts")
alerts = [
{"level": "error", "message": "Churn rate exceeded threshold (>5%)"},
{"level": "warning", "message": "Support ticket volume 20% above average"},
]
for alert in alerts:
if alert["level"] == "error":
st.error(f"🔴 {alert['message']}")
elif alert["level"] == "warning":
st.warning(f"🟡 {alert['message']}")