Build production Apache Airflow DAGs with best practices for operators, sensors, testing, and deployment. Use when creating data pipelines, orchestrating workflows, or scheduling batch jobs.
Inherits all available tools
Additional assets for this skill
This skill inherits all available tools. When active, it can use any tool Claude has access to.
Production-ready patterns for Apache Airflow including DAG design, operators, sensors, testing, and deployment strategies.
| Principle | Description |
|---|---|
| Idempotent | Running twice produces same result |
| Atomic | Tasks succeed or fail completely |
| Incremental | Process only new/changed data |
| Observable | Logs, metrics, alerts at every step |
# Linear
task1 >> task2 >> task3
# Fan-out
task1 >> [task2, task3, task4]
# Fan-in
[task1, task2, task3] >> task4
# Complex
task1 >> task2 >> task4
task1 >> task3 >> task4
# dags/example_dag.py
from datetime import datetime, timedelta
from airflow import DAG
from airflow.operators.python import PythonOperator
from airflow.operators.empty import EmptyOperator
default_args = {
'owner': 'data-team',
'depends_on_past': False,
'email_on_failure': True,
'email_on_retry': False,
'retries': 3,
'retry_delay': timedelta(minutes=5),
'retry_exponential_backoff': True,
'max_retry_delay': timedelta(hours=1),
}
with DAG(
dag_id='example_etl',
default_args=default_args,
description='Example ETL pipeline',
schedule='0 6 * * *', # Daily at 6 AM
start_date=datetime(2024, 1, 1),
catchup=False,
tags=['etl', 'example'],
max_active_runs=1,
) as dag:
start = EmptyOperator(task_id='start')
def extract_data(**context):
execution_date = context['ds']
# Extract logic here
return {'records': 1000}
extract = PythonOperator(
task_id='extract',
python_callable=extract_data,
)
end = EmptyOperator(task_id='end')
start >> extract >> end
# dags/taskflow_example.py
from datetime import datetime
from airflow.decorators import dag, task
from airflow.models import Variable
@dag(
dag_id='taskflow_etl',
schedule='@daily',
start_date=datetime(2024, 1, 1),
catchup=False,
tags=['etl', 'taskflow'],
)
def taskflow_etl():
"""ETL pipeline using TaskFlow API"""
@task()
def extract(source: str) -> dict:
"""Extract data from source"""
import pandas as pd
df = pd.read_csv(f's3://bucket/{source}/{{ ds }}.csv')
return {'data': df.to_dict(), 'rows': len(df)}
@task()
def transform(extracted: dict) -> dict:
"""Transform extracted data"""
import pandas as pd
df = pd.DataFrame(extracted['data'])
df['processed_at'] = datetime.now()
df = df.dropna()
return {'data': df.to_dict(), 'rows': len(df)}
@task()
def load(transformed: dict, target: str):
"""Load data to target"""
import pandas as pd
df = pd.DataFrame(transformed['data'])
df.to_parquet(f's3://bucket/{target}/{{ ds }}.parquet')
return transformed['rows']
@task()
def notify(rows_loaded: int):
"""Send notification"""
print(f'Loaded {rows_loaded} rows')
# Define dependencies with XCom passing
extracted = extract(source='raw_data')
transformed = transform(extracted)
loaded = load(transformed, target='processed_data')
notify(loaded)
# Instantiate the DAG
taskflow_etl()
# dags/dynamic_dag_factory.py
from datetime import datetime, timedelta
from airflow import DAG
from airflow.operators.python import PythonOperator
from airflow.models import Variable
import json
# Configuration for multiple similar pipelines
PIPELINE_CONFIGS = [
{'name': 'customers', 'schedule': '@daily', 'source': 's3://raw/customers'},
{'name': 'orders', 'schedule': '@hourly', 'source': 's3://raw/orders'},
{'name': 'products', 'schedule': '@weekly', 'source': 's3://raw/products'},
]
def create_dag(config: dict) -> DAG:
"""Factory function to create DAGs from config"""
dag_id = f"etl_{config['name']}"
default_args = {
'owner': 'data-team',
'retries': 3,
'retry_delay': timedelta(minutes=5),
}
dag = DAG(
dag_id=dag_id,
default_args=default_args,
schedule=config['schedule'],
start_date=datetime(2024, 1, 1),
catchup=False,
tags=['etl', 'dynamic', config['name']],
)
with dag:
def extract_fn(source, **context):
print(f"Extracting from {source} for {context['ds']}")
def transform_fn(**context):
print(f"Transforming data for {context['ds']}")
def load_fn(table_name, **context):
print(f"Loading to {table_name} for {context['ds']}")
extract = PythonOperator(
task_id='extract',
python_callable=extract_fn,
op_kwargs={'source': config['source']},
)
transform = PythonOperator(
task_id='transform',
python_callable=transform_fn,
)
load = PythonOperator(
task_id='load',
python_callable=load_fn,
op_kwargs={'table_name': config['name']},
)
extract >> transform >> load
return dag
# Generate DAGs
for config in PIPELINE_CONFIGS:
globals()[f"dag_{config['name']}"] = create_dag(config)
# dags/branching_example.py
from airflow.decorators import dag, task
from airflow.operators.python import BranchPythonOperator
from airflow.operators.empty import EmptyOperator
from airflow.utils.trigger_rule import TriggerRule
@dag(
dag_id='branching_pipeline',
schedule='@daily',
start_date=datetime(2024, 1, 1),
catchup=False,
)
def branching_pipeline():
@task()
def check_data_quality() -> dict:
"""Check data quality and return metrics"""
quality_score = 0.95 # Simulated
return {'score': quality_score, 'rows': 10000}
def choose_branch(**context) -> str:
"""Determine which branch to execute"""
ti = context['ti']
metrics = ti.xcom_pull(task_ids='check_data_quality')
if metrics['score'] >= 0.9:
return 'high_quality_path'
elif metrics['score'] >= 0.7:
return 'medium_quality_path'
else:
return 'low_quality_path'
quality_check = check_data_quality()
branch = BranchPythonOperator(
task_id='branch',
python_callable=choose_branch,
)
high_quality = EmptyOperator(task_id='high_quality_path')
medium_quality = EmptyOperator(task_id='medium_quality_path')
low_quality = EmptyOperator(task_id='low_quality_path')
# Join point - runs after any branch completes
join = EmptyOperator(
task_id='join',
trigger_rule=TriggerRule.NONE_FAILED_MIN_ONE_SUCCESS,
)
quality_check >> branch >> [high_quality, medium_quality, low_quality] >> join
branching_pipeline()
# dags/sensor_patterns.py
from datetime import datetime, timedelta
from airflow import DAG
from airflow.sensors.filesystem import FileSensor
from airflow.providers.amazon.aws.sensors.s3 import S3KeySensor
from airflow.sensors.external_task import ExternalTaskSensor
from airflow.operators.python import PythonOperator
with DAG(
dag_id='sensor_example',
schedule='@daily',
start_date=datetime(2024, 1, 1),
catchup=False,
) as dag:
# Wait for file on S3
wait_for_file = S3KeySensor(
task_id='wait_for_s3_file',
bucket_name='data-lake',
bucket_key='raw/{{ ds }}/data.parquet',
aws_conn_id='aws_default',
timeout=60 * 60 * 2, # 2 hours
poke_interval=60 * 5, # Check every 5 minutes
mode='reschedule', # Free up worker slot while waiting
)
# Wait for another DAG to complete
wait_for_upstream = ExternalTaskSensor(
task_id='wait_for_upstream_dag',
external_dag_id='upstream_etl',
external_task_id='final_task',
execution_date_fn=lambda dt: dt, # Same execution date
timeout=60 * 60 * 3,
mode='reschedule',
)
# Custom sensor using @task.sensor decorator
@task.sensor(poke_interval=60, timeout=3600, mode='reschedule')
def wait_for_api() -> PokeReturnValue:
"""Custom sensor for API availability"""
import requests
response = requests.get('https://api.example.com/health')
is_done = response.status_code == 200
return PokeReturnValue(is_done=is_done, xcom_value=response.json())
api_ready = wait_for_api()
def process_data(**context):
api_result = context['ti'].xcom_pull(task_ids='wait_for_api')
print(f"API returned: {api_result}")
process = PythonOperator(
task_id='process',
python_callable=process_data,
)
[wait_for_file, wait_for_upstream, api_ready] >> process
# dags/error_handling.py
from datetime import datetime, timedelta
from airflow import DAG
from airflow.operators.python import PythonOperator
from airflow.utils.trigger_rule import TriggerRule
from airflow.models import Variable
def task_failure_callback(context):
"""Callback on task failure"""
task_instance = context['task_instance']
exception = context.get('exception')
# Send to Slack/PagerDuty/etc
message = f"""
Task Failed!
DAG: {task_instance.dag_id}
Task: {task_instance.task_id}
Execution Date: {context['ds']}
Error: {exception}
Log URL: {task_instance.log_url}
"""
# send_slack_alert(message)
print(message)
def dag_failure_callback(context):
"""Callback on DAG failure"""
# Aggregate failures, send summary
pass
with DAG(
dag_id='error_handling_example',
schedule='@daily',
start_date=datetime(2024, 1, 1),
catchup=False,
on_failure_callback=dag_failure_callback,
default_args={
'on_failure_callback': task_failure_callback,
'retries': 3,
'retry_delay': timedelta(minutes=5),
},
) as dag:
def might_fail(**context):
import random
if random.random() < 0.3:
raise ValueError("Random failure!")
return "Success"
risky_task = PythonOperator(
task_id='risky_task',
python_callable=might_fail,
)
def cleanup(**context):
"""Cleanup runs regardless of upstream failures"""
print("Cleaning up...")
cleanup_task = PythonOperator(
task_id='cleanup',
python_callable=cleanup,
trigger_rule=TriggerRule.ALL_DONE, # Run even if upstream fails
)
def notify_success(**context):
"""Only runs if all upstream succeeded"""
print("All tasks succeeded!")
success_notification = PythonOperator(
task_id='notify_success',
python_callable=notify_success,
trigger_rule=TriggerRule.ALL_SUCCESS,
)
risky_task >> [cleanup_task, success_notification]
# tests/test_dags.py
import pytest
from datetime import datetime
from airflow.models import DagBag
@pytest.fixture
def dagbag():
return DagBag(dag_folder='dags/', include_examples=False)
def test_dag_loaded(dagbag):
"""Test that all DAGs load without errors"""
assert len(dagbag.import_errors) == 0, f"DAG import errors: {dagbag.import_errors}"
def test_dag_structure(dagbag):
"""Test specific DAG structure"""
dag = dagbag.get_dag('example_etl')
assert dag is not None
assert len(dag.tasks) == 3
assert dag.schedule_interval == '0 6 * * *'
def test_task_dependencies(dagbag):
"""Test task dependencies are correct"""
dag = dagbag.get_dag('example_etl')
extract_task = dag.get_task('extract')
assert 'start' in [t.task_id for t in extract_task.upstream_list]
assert 'end' in [t.task_id for t in extract_task.downstream_list]
def test_dag_integrity(dagbag):
"""Test DAG has no cycles and is valid"""
for dag_id, dag in dagbag.dags.items():
assert dag.test_cycle() is None, f"Cycle detected in {dag_id}"
# Test individual task logic
def test_extract_function():
"""Unit test for extract function"""
from dags.example_dag import extract_data
result = extract_data(ds='2024-01-01')
assert 'records' in result
assert isinstance(result['records'], int)
airflow/
├── dags/
│ ├── __init__.py
│ ├── common/
│ │ ├── __init__.py
│ │ ├── operators.py # Custom operators
│ │ ├── sensors.py # Custom sensors
│ │ └── callbacks.py # Alert callbacks
│ ├── etl/
│ │ ├── customers.py
│ │ └── orders.py
│ └── ml/
│ └── training.py
├── plugins/
│ └── custom_plugin.py
├── tests/
│ ├── __init__.py
│ ├── test_dags.py
│ └── test_operators.py
├── docker-compose.yml
└── requirements.txt
mode='reschedule' - For sensors, free up workersdepends_on_past=True - Creates bottlenecks{{ ds }} macros