Implement distributed tracing with Jaeger and Tempo to track requests across microservices and identify performance bottlenecks. Use when debugging microservices, analyzing request flows, or implementing observability for distributed systems.
Inherits all available tools
Additional assets for this skill
This skill inherits all available tools. When active, it can use any tool Claude has access to.
Implement distributed tracing with Jaeger and Tempo for request flow visibility across microservices.
Track requests across distributed systems to understand latency, dependencies, and failure points.
Trace (Request ID: abc123)
↓
Span (frontend) [100ms]
↓
Span (api-gateway) [80ms]
├→ Span (auth-service) [10ms]
└→ Span (user-service) [60ms]
└→ Span (database) [40ms]
# Deploy Jaeger Operator
kubectl create namespace observability
kubectl create -f https://github.com/jaegertracing/jaeger-operator/releases/download/v1.51.0/jaeger-operator.yaml -n observability
# Deploy Jaeger instance
kubectl apply -f - <<EOF
apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
name: jaeger
namespace: observability
spec:
strategy: production
storage:
type: elasticsearch
options:
es:
server-urls: http://elasticsearch:9200
ingress:
enabled: true
EOF
version: '3.8'
services:
jaeger:
image: jaegertracing/all-in-one:latest
ports:
- "5775:5775/udp"
- "6831:6831/udp"
- "6832:6832/udp"
- "5778:5778"
- "16686:16686" # UI
- "14268:14268" # Collector
- "14250:14250" # gRPC
- "9411:9411" # Zipkin
environment:
- COLLECTOR_ZIPKIN_HOST_PORT=:9411
Reference: See references/jaeger-setup.md
from opentelemetry import trace
from opentelemetry.exporter.jaeger.thrift import JaegerExporter
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.instrumentation.flask import FlaskInstrumentor
from flask import Flask
# Initialize tracer
resource = Resource(attributes={SERVICE_NAME: "my-service"})
provider = TracerProvider(resource=resource)
processor = BatchSpanProcessor(JaegerExporter(
agent_host_name="jaeger",
agent_port=6831,
))
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
# Instrument Flask
app = Flask(__name__)
FlaskInstrumentor().instrument_app(app)
@app.route('/api/users')
def get_users():
tracer = trace.get_tracer(__name__)
with tracer.start_as_current_span("get_users") as span:
span.set_attribute("user.count", 100)
# Business logic
users = fetch_users_from_db()
return {"users": users}
def fetch_users_from_db():
tracer = trace.get_tracer(__name__)
with tracer.start_as_current_span("database_query") as span:
span.set_attribute("db.system", "postgresql")
span.set_attribute("db.statement", "SELECT * FROM users")
# Database query
return query_database()
const { NodeTracerProvider } = require('@opentelemetry/sdk-trace-node');
const { JaegerExporter } = require('@opentelemetry/exporter-jaeger');
const { BatchSpanProcessor } = require('@opentelemetry/sdk-trace-base');
const { registerInstrumentations } = require('@opentelemetry/instrumentation');
const { HttpInstrumentation } = require('@opentelemetry/instrumentation-http');
const { ExpressInstrumentation } = require('@opentelemetry/instrumentation-express');
// Initialize tracer
const provider = new NodeTracerProvider({
resource: { attributes: { 'service.name': 'my-service' } }
});
const exporter = new JaegerExporter({
endpoint: 'http://jaeger:14268/api/traces'
});
provider.addSpanProcessor(new BatchSpanProcessor(exporter));
provider.register();
// Instrument libraries
registerInstrumentations({
instrumentations: [
new HttpInstrumentation(),
new ExpressInstrumentation(),
],
});
const express = require('express');
const app = express();
app.get('/api/users', async (req, res) => {
const tracer = trace.getTracer('my-service');
const span = tracer.startSpan('get_users');
try {
const users = await fetchUsers();
span.setAttributes({ 'user.count': users.length });
res.json({ users });
} finally {
span.end();
}
});
package main
import (
"context"
"go.opentelemetry.io/otel"
"go.opentelemetry.io/otel/exporters/jaeger"
"go.opentelemetry.io/otel/sdk/resource"
sdktrace "go.opentelemetry.io/otel/sdk/trace"
semconv "go.opentelemetry.io/otel/semconv/v1.4.0"
)
func initTracer() (*sdktrace.TracerProvider, error) {
exporter, err := jaeger.New(jaeger.WithCollectorEndpoint(
jaeger.WithEndpoint("http://jaeger:14268/api/traces"),
))
if err != nil {
return nil, err
}
tp := sdktrace.NewTracerProvider(
sdktrace.WithBatcher(exporter),
sdktrace.WithResource(resource.NewWithAttributes(
semconv.SchemaURL,
semconv.ServiceNameKey.String("my-service"),
)),
)
otel.SetTracerProvider(tp)
return tp, nil
}
func getUsers(ctx context.Context) ([]User, error) {
tracer := otel.Tracer("my-service")
ctx, span := tracer.Start(ctx, "get_users")
defer span.End()
span.SetAttributes(attribute.String("user.filter", "active"))
users, err := fetchUsersFromDB(ctx)
if err != nil {
span.RecordError(err)
return nil, err
}
span.SetAttributes(attribute.Int("user.count", len(users)))
return users, nil
}
Reference: See references/instrumentation.md
traceparent: 00-0af7651916cd43dd8448eb211c80319c-b7ad6b7169203331-01
tracestate: congo=t61rcWkgMzE
from opentelemetry.propagate import inject
headers = {}
inject(headers) # Injects trace context
response = requests.get('http://downstream-service/api', headers=headers)
const { propagation } = require('@opentelemetry/api');
const headers = {};
propagation.inject(context.active(), headers);
axios.get('http://downstream-service/api', { headers });
apiVersion: v1
kind: ConfigMap
metadata:
name: tempo-config
data:
tempo.yaml: |
server:
http_listen_port: 3200
distributor:
receivers:
jaeger:
protocols:
thrift_http:
grpc:
otlp:
protocols:
http:
grpc:
storage:
trace:
backend: s3
s3:
bucket: tempo-traces
endpoint: s3.amazonaws.com
querier:
frontend_worker:
frontend_address: tempo-query-frontend:9095
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: tempo
spec:
replicas: 1
template:
spec:
containers:
- name: tempo
image: grafana/tempo:latest
args:
- -config.file=/etc/tempo/tempo.yaml
volumeMounts:
- name: config
mountPath: /etc/tempo
volumes:
- name: config
configMap:
name: tempo-config
Reference: See assets/jaeger-config.yaml.template
# Sample 1% of traces
sampler:
type: probabilistic
param: 0.01
# Sample max 100 traces per second
sampler:
type: ratelimiting
param: 100
from opentelemetry.sdk.trace.sampling import ParentBased, TraceIdRatioBased
# Sample based on trace ID (deterministic)
sampler = ParentBased(root=TraceIdRatioBased(0.01))
Jaeger Query:
service=my-service
duration > 1s
Jaeger Query:
service=my-service
error=true
tags.http.status_code >= 500
Jaeger automatically generates service dependency graphs showing:
import logging
from opentelemetry import trace
logger = logging.getLogger(__name__)
def process_request():
span = trace.get_current_span()
trace_id = span.get_span_context().trace_id
logger.info(
"Processing request",
extra={"trace_id": format(trace_id, '032x')}
)
No traces appearing:
High latency overhead:
references/jaeger-setup.md - Jaeger installationreferences/instrumentation.md - Instrumentation patternsassets/jaeger-config.yaml.template - Jaeger configurationprometheus-configuration - For metricsgrafana-dashboards - For visualizationslo-implementation - For latency SLOs