Build comprehensive attack trees to visualize threat paths. Use when mapping attack scenarios, identifying defense gaps, or communicating security risks to stakeholders.
Inherits all available tools
Additional assets for this skill
This skill inherits all available tools. When active, it can use any tool Claude has access to.
Systematic attack path visualization and analysis.
[Root Goal]
|
┌────────────┴────────────┐
│ │
[Sub-goal 1] [Sub-goal 2]
(OR node) (AND node)
│ │
┌─────┴─────┐ ┌─────┴─────┐
│ │ │ │
[Attack] [Attack] [Attack] [Attack]
(leaf) (leaf) (leaf) (leaf)
| Type | Symbol | Description |
|---|---|---|
| OR | Oval | Any child achieves goal |
| AND | Rectangle | All children required |
| Leaf | Box | Atomic attack step |
| Attribute | Description | Values |
|---|---|---|
| Cost | Resources needed | $, $$, $$$ |
| Time | Duration to execute | Hours, Days, Weeks |
| Skill | Expertise required | Low, Medium, High |
| Detection | Likelihood of detection | Low, Medium, High |
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Dict, Optional, Union
import json
class NodeType(Enum):
OR = "or"
AND = "and"
LEAF = "leaf"
class Difficulty(Enum):
TRIVIAL = 1
LOW = 2
MEDIUM = 3
HIGH = 4
EXPERT = 5
class Cost(Enum):
FREE = 0
LOW = 1
MEDIUM = 2
HIGH = 3
VERY_HIGH = 4
class DetectionRisk(Enum):
NONE = 0
LOW = 1
MEDIUM = 2
HIGH = 3
CERTAIN = 4
@dataclass
class AttackAttributes:
difficulty: Difficulty = Difficulty.MEDIUM
cost: Cost = Cost.MEDIUM
detection_risk: DetectionRisk = DetectionRisk.MEDIUM
time_hours: float = 8.0
requires_insider: bool = False
requires_physical: bool = False
@dataclass
class AttackNode:
id: str
name: str
description: str
node_type: NodeType
attributes: AttackAttributes = field(default_factory=AttackAttributes)
children: List['AttackNode'] = field(default_factory=list)
mitigations: List[str] = field(default_factory=list)
cve_refs: List[str] = field(default_factory=list)
def add_child(self, child: 'AttackNode') -> None:
self.children.append(child)
def calculate_path_difficulty(self) -> float:
"""Calculate aggregate difficulty for this path."""
if self.node_type == NodeType.LEAF:
return self.attributes.difficulty.value
if not self.children:
return 0
child_difficulties = [c.calculate_path_difficulty() for c in self.children]
if self.node_type == NodeType.OR:
return min(child_difficulties)
else: # AND
return max(child_difficulties)
def calculate_path_cost(self) -> float:
"""Calculate aggregate cost for this path."""
if self.node_type == NodeType.LEAF:
return self.attributes.cost.value
if not self.children:
return 0
child_costs = [c.calculate_path_cost() for c in self.children]
if self.node_type == NodeType.OR:
return min(child_costs)
else: # AND
return sum(child_costs)
def to_dict(self) -> Dict:
"""Convert to dictionary for serialization."""
return {
"id": self.id,
"name": self.name,
"description": self.description,
"type": self.node_type.value,
"attributes": {
"difficulty": self.attributes.difficulty.name,
"cost": self.attributes.cost.name,
"detection_risk": self.attributes.detection_risk.name,
"time_hours": self.attributes.time_hours,
},
"mitigations": self.mitigations,
"children": [c.to_dict() for c in self.children]
}
@dataclass
class AttackTree:
name: str
description: str
root: AttackNode
version: str = "1.0"
def find_easiest_path(self) -> List[AttackNode]:
"""Find the path with lowest difficulty."""
return self._find_path(self.root, minimize="difficulty")
def find_cheapest_path(self) -> List[AttackNode]:
"""Find the path with lowest cost."""
return self._find_path(self.root, minimize="cost")
def find_stealthiest_path(self) -> List[AttackNode]:
"""Find the path with lowest detection risk."""
return self._find_path(self.root, minimize="detection")
def _find_path(
self,
node: AttackNode,
minimize: str
) -> List[AttackNode]:
"""Recursive path finding."""
if node.node_type == NodeType.LEAF:
return [node]
if not node.children:
return [node]
if node.node_type == NodeType.OR:
# Pick the best child path
best_path = None
best_score = float('inf')
for child in node.children:
child_path = self._find_path(child, minimize)
score = self._path_score(child_path, minimize)
if score < best_score:
best_score = score
best_path = child_path
return [node] + (best_path or [])
else: # AND
# Must traverse all children
path = [node]
for child in node.children:
path.extend(self._find_path(child, minimize))
return path
def _path_score(self, path: List[AttackNode], metric: str) -> float:
"""Calculate score for a path."""
if metric == "difficulty":
return sum(n.attributes.difficulty.value for n in path if n.node_type == NodeType.LEAF)
elif metric == "cost":
return sum(n.attributes.cost.value for n in path if n.node_type == NodeType.LEAF)
elif metric == "detection":
return sum(n.attributes.detection_risk.value for n in path if n.node_type == NodeType.LEAF)
return 0
def get_all_leaf_attacks(self) -> List[AttackNode]:
"""Get all leaf attack nodes."""
leaves = []
self._collect_leaves(self.root, leaves)
return leaves
def _collect_leaves(self, node: AttackNode, leaves: List[AttackNode]) -> None:
if node.node_type == NodeType.LEAF:
leaves.append(node)
for child in node.children:
self._collect_leaves(child, leaves)
def get_unmitigated_attacks(self) -> List[AttackNode]:
"""Find attacks without mitigations."""
return [n for n in self.get_all_leaf_attacks() if not n.mitigations]
def export_json(self) -> str:
"""Export tree to JSON."""
return json.dumps({
"name": self.name,
"description": self.description,
"version": self.version,
"root": self.root.to_dict()
}, indent=2)
class AttackTreeBuilder:
"""Fluent builder for attack trees."""
def __init__(self, name: str, description: str):
self.name = name
self.description = description
self._node_stack: List[AttackNode] = []
self._root: Optional[AttackNode] = None
def goal(self, id: str, name: str, description: str = "") -> 'AttackTreeBuilder':
"""Set the root goal (OR node by default)."""
self._root = AttackNode(
id=id,
name=name,
description=description,
node_type=NodeType.OR
)
self._node_stack = [self._root]
return self
def or_node(self, id: str, name: str, description: str = "") -> 'AttackTreeBuilder':
"""Add an OR sub-goal."""
node = AttackNode(
id=id,
name=name,
description=description,
node_type=NodeType.OR
)
self._current().add_child(node)
self._node_stack.append(node)
return self
def and_node(self, id: str, name: str, description: str = "") -> 'AttackTreeBuilder':
"""Add an AND sub-goal (all children required)."""
node = AttackNode(
id=id,
name=name,
description=description,
node_type=NodeType.AND
)
self._current().add_child(node)
self._node_stack.append(node)
return self
def attack(
self,
id: str,
name: str,
description: str = "",
difficulty: Difficulty = Difficulty.MEDIUM,
cost: Cost = Cost.MEDIUM,
detection: DetectionRisk = DetectionRisk.MEDIUM,
time_hours: float = 8.0,
mitigations: List[str] = None
) -> 'AttackTreeBuilder':
"""Add a leaf attack node."""
node = AttackNode(
id=id,
name=name,
description=description,
node_type=NodeType.LEAF,
attributes=AttackAttributes(
difficulty=difficulty,
cost=cost,
detection_risk=detection,
time_hours=time_hours
),
mitigations=mitigations or []
)
self._current().add_child(node)
return self
def end(self) -> 'AttackTreeBuilder':
"""Close current node, return to parent."""
if len(self._node_stack) > 1:
self._node_stack.pop()
return self
def build(self) -> AttackTree:
"""Build the attack tree."""
if not self._root:
raise ValueError("No root goal defined")
return AttackTree(
name=self.name,
description=self.description,
root=self._root
)
def _current(self) -> AttackNode:
if not self._node_stack:
raise ValueError("No current node")
return self._node_stack[-1]
# Example usage
def build_account_takeover_tree() -> AttackTree:
"""Build attack tree for account takeover scenario."""
return (
AttackTreeBuilder("Account Takeover", "Gain unauthorized access to user account")
.goal("G1", "Take Over User Account")
.or_node("S1", "Steal Credentials")
.attack(
"A1", "Phishing Attack",
difficulty=Difficulty.LOW,
cost=Cost.LOW,
detection=DetectionRisk.MEDIUM,
mitigations=["Security awareness training", "Email filtering"]
)
.attack(
"A2", "Credential Stuffing",
difficulty=Difficulty.TRIVIAL,
cost=Cost.LOW,
detection=DetectionRisk.HIGH,
mitigations=["Rate limiting", "MFA", "Password breach monitoring"]
)
.attack(
"A3", "Keylogger Malware",
difficulty=Difficulty.MEDIUM,
cost=Cost.MEDIUM,
detection=DetectionRisk.MEDIUM,
mitigations=["Endpoint protection", "MFA"]
)
.end()
.or_node("S2", "Bypass Authentication")
.attack(
"A4", "Session Hijacking",
difficulty=Difficulty.MEDIUM,
cost=Cost.LOW,
detection=DetectionRisk.LOW,
mitigations=["Secure session management", "HTTPS only"]
)
.attack(
"A5", "Authentication Bypass Vulnerability",
difficulty=Difficulty.HIGH,
cost=Cost.LOW,
detection=DetectionRisk.LOW,
mitigations=["Security testing", "Code review", "WAF"]
)
.end()
.or_node("S3", "Social Engineering")
.and_node("S3.1", "Account Recovery Attack")
.attack(
"A6", "Gather Personal Information",
difficulty=Difficulty.LOW,
cost=Cost.FREE,
detection=DetectionRisk.NONE
)
.attack(
"A7", "Call Support Desk",
difficulty=Difficulty.MEDIUM,
cost=Cost.FREE,
detection=DetectionRisk.MEDIUM,
mitigations=["Support verification procedures", "Security questions"]
)
.end()
.end()
.build()
)
class MermaidExporter:
"""Export attack trees to Mermaid diagram format."""
def __init__(self, tree: AttackTree):
self.tree = tree
self._lines: List[str] = []
self._node_count = 0
def export(self) -> str:
"""Export tree to Mermaid flowchart."""
self._lines = ["flowchart TD"]
self._export_node(self.tree.root, None)
return "\n".join(self._lines)
def _export_node(self, node: AttackNode, parent_id: Optional[str]) -> str:
"""Recursively export nodes."""
node_id = f"N{self._node_count}"
self._node_count += 1
# Node shape based on type
if node.node_type == NodeType.OR:
shape = f"{node_id}(({node.name}))"
elif node.node_type == NodeType.AND:
shape = f"{node_id}[{node.name}]"
else: # LEAF
# Color based on difficulty
style = self._get_leaf_style(node)
shape = f"{node_id}[/{node.name}/]"
self._lines.append(f" style {node_id} {style}")
self._lines.append(f" {shape}")
if parent_id:
connector = "-->" if node.node_type != NodeType.AND else "==>"
self._lines.append(f" {parent_id} {connector} {node_id}")
for child in node.children:
self._export_node(child, node_id)
return node_id
def _get_leaf_style(self, node: AttackNode) -> str:
"""Get style based on attack attributes."""
colors = {
Difficulty.TRIVIAL: "fill:#ff6b6b", # Red - easy attack
Difficulty.LOW: "fill:#ffa06b",
Difficulty.MEDIUM: "fill:#ffd93d",
Difficulty.HIGH: "fill:#6bcb77",
Difficulty.EXPERT: "fill:#4d96ff", # Blue - hard attack
}
color = colors.get(node.attributes.difficulty, "fill:#gray")
return color
class PlantUMLExporter:
"""Export attack trees to PlantUML format."""
def __init__(self, tree: AttackTree):
self.tree = tree
def export(self) -> str:
"""Export tree to PlantUML."""
lines = [
"@startmindmap",
f"* {self.tree.name}",
]
self._export_node(self.tree.root, lines, 1)
lines.append("@endmindmap")
return "\n".join(lines)
def _export_node(self, node: AttackNode, lines: List[str], depth: int) -> None:
"""Recursively export nodes."""
prefix = "*" * (depth + 1)
if node.node_type == NodeType.OR:
marker = "[OR]"
elif node.node_type == NodeType.AND:
marker = "[AND]"
else:
diff = node.attributes.difficulty.name
marker = f"<<{diff}>>"
lines.append(f"{prefix} {marker} {node.name}")
for child in node.children:
self._export_node(child, lines, depth + 1)
from typing import Set, Tuple
class AttackPathAnalyzer:
"""Analyze attack paths and coverage."""
def __init__(self, tree: AttackTree):
self.tree = tree
def get_all_paths(self) -> List[List[AttackNode]]:
"""Get all possible attack paths."""
paths = []
self._collect_paths(self.tree.root, [], paths)
return paths
def _collect_paths(
self,
node: AttackNode,
current_path: List[AttackNode],
all_paths: List[List[AttackNode]]
) -> None:
"""Recursively collect all paths."""
current_path = current_path + [node]
if node.node_type == NodeType.LEAF:
all_paths.append(current_path)
return
if not node.children:
all_paths.append(current_path)
return
if node.node_type == NodeType.OR:
# Each child is a separate path
for child in node.children:
self._collect_paths(child, current_path, all_paths)
else: # AND
# Must combine all children
child_paths = []
for child in node.children:
child_sub_paths = []
self._collect_paths(child, [], child_sub_paths)
child_paths.append(child_sub_paths)
# Combine paths from all AND children
combined = self._combine_and_paths(child_paths)
for combo in combined:
all_paths.append(current_path + combo)
def _combine_and_paths(
self,
child_paths: List[List[List[AttackNode]]]
) -> List[List[AttackNode]]:
"""Combine paths from AND node children."""
if not child_paths:
return [[]]
if len(child_paths) == 1:
return [path for paths in child_paths for path in paths]
# Cartesian product of all child path combinations
result = [[]]
for paths in child_paths:
new_result = []
for existing in result:
for path in paths:
new_result.append(existing + path)
result = new_result
return result
def calculate_path_metrics(self, path: List[AttackNode]) -> Dict:
"""Calculate metrics for a specific path."""
leaves = [n for n in path if n.node_type == NodeType.LEAF]
total_difficulty = sum(n.attributes.difficulty.value for n in leaves)
total_cost = sum(n.attributes.cost.value for n in leaves)
total_time = sum(n.attributes.time_hours for n in leaves)
max_detection = max((n.attributes.detection_risk.value for n in leaves), default=0)
return {
"steps": len(leaves),
"total_difficulty": total_difficulty,
"avg_difficulty": total_difficulty / len(leaves) if leaves else 0,
"total_cost": total_cost,
"total_time_hours": total_time,
"max_detection_risk": max_detection,
"requires_insider": any(n.attributes.requires_insider for n in leaves),
"requires_physical": any(n.attributes.requires_physical for n in leaves),
}
def identify_critical_nodes(self) -> List[Tuple[AttackNode, int]]:
"""Find nodes that appear in the most paths."""
paths = self.get_all_paths()
node_counts: Dict[str, Tuple[AttackNode, int]] = {}
for path in paths:
for node in path:
if node.id not in node_counts:
node_counts[node.id] = (node, 0)
node_counts[node.id] = (node, node_counts[node.id][1] + 1)
return sorted(
node_counts.values(),
key=lambda x: x[1],
reverse=True
)
def coverage_analysis(self, mitigated_attacks: Set[str]) -> Dict:
"""Analyze how mitigations affect attack coverage."""
all_paths = self.get_all_paths()
blocked_paths = []
open_paths = []
for path in all_paths:
path_attacks = {n.id for n in path if n.node_type == NodeType.LEAF}
if path_attacks & mitigated_attacks:
blocked_paths.append(path)
else:
open_paths.append(path)
return {
"total_paths": len(all_paths),
"blocked_paths": len(blocked_paths),
"open_paths": len(open_paths),
"coverage_percentage": len(blocked_paths) / len(all_paths) * 100 if all_paths else 0,
"open_path_details": [
{"path": [n.name for n in p], "metrics": self.calculate_path_metrics(p)}
for p in open_paths[:5] # Top 5 open paths
]
}
def prioritize_mitigations(self) -> List[Dict]:
"""Prioritize mitigations by impact."""
critical_nodes = self.identify_critical_nodes()
paths = self.get_all_paths()
total_paths = len(paths)
recommendations = []
for node, count in critical_nodes:
if node.node_type == NodeType.LEAF and node.mitigations:
recommendations.append({
"attack": node.name,
"attack_id": node.id,
"paths_blocked": count,
"coverage_impact": count / total_paths * 100,
"difficulty": node.attributes.difficulty.name,
"mitigations": node.mitigations,
})
return sorted(recommendations, key=lambda x: x["coverage_impact"], reverse=True)