Implement memory-safe programming with RAII, ownership, smart pointers, and resource management across Rust, C++, and C. Use when writing safe systems code, managing resources, or preventing memory bugs.
Inherits all available tools
Additional assets for this skill
This skill inherits all available tools. When active, it can use any tool Claude has access to.
Cross-language patterns for memory-safe programming including RAII, ownership, smart pointers, and resource management.
| Bug Type | Description | Prevention |
|---|---|---|
| Use-after-free | Access freed memory | Ownership, RAII |
| Double-free | Free same memory twice | Smart pointers |
| Memory leak | Never free memory | RAII, GC |
| Buffer overflow | Write past buffer end | Bounds checking |
| Dangling pointer | Pointer to freed memory | Lifetime tracking |
| Data race | Concurrent unsynchronized access | Ownership, Sync |
Manual (C) → Smart Pointers (C++) → Ownership (Rust) → GC (Go, Java)
Less safe More safe
More control Less control
// RAII: Resource Acquisition Is Initialization
// Resource lifetime tied to object lifetime
#include <memory>
#include <fstream>
#include <mutex>
// File handle with RAII
class FileHandle {
public:
explicit FileHandle(const std::string& path)
: file_(path) {
if (!file_.is_open()) {
throw std::runtime_error("Failed to open file");
}
}
// Destructor automatically closes file
~FileHandle() = default; // fstream closes in its destructor
// Delete copy (prevent double-close)
FileHandle(const FileHandle&) = delete;
FileHandle& operator=(const FileHandle&) = delete;
// Allow move
FileHandle(FileHandle&&) = default;
FileHandle& operator=(FileHandle&&) = default;
void write(const std::string& data) {
file_ << data;
}
private:
std::fstream file_;
};
// Lock guard (RAII for mutexes)
class Database {
public:
void update(const std::string& key, const std::string& value) {
std::lock_guard<std::mutex> lock(mutex_); // Released on scope exit
data_[key] = value;
}
std::string get(const std::string& key) {
std::shared_lock<std::shared_mutex> lock(shared_mutex_);
return data_[key];
}
private:
std::mutex mutex_;
std::shared_mutex shared_mutex_;
std::map<std::string, std::string> data_;
};
// Transaction with rollback (RAII)
template<typename T>
class Transaction {
public:
explicit Transaction(T& target)
: target_(target), backup_(target), committed_(false) {}
~Transaction() {
if (!committed_) {
target_ = backup_; // Rollback
}
}
void commit() { committed_ = true; }
T& get() { return target_; }
private:
T& target_;
T backup_;
bool committed_;
};
#include <memory>
// unique_ptr: Single ownership
class Engine {
public:
void start() { /* ... */ }
};
class Car {
public:
Car() : engine_(std::make_unique<Engine>()) {}
void start() {
engine_->start();
}
// Transfer ownership
std::unique_ptr<Engine> extractEngine() {
return std::move(engine_);
}
private:
std::unique_ptr<Engine> engine_;
};
// shared_ptr: Shared ownership
class Node {
public:
std::string data;
std::shared_ptr<Node> next;
// Use weak_ptr to break cycles
std::weak_ptr<Node> parent;
};
void sharedPtrExample() {
auto node1 = std::make_shared<Node>();
auto node2 = std::make_shared<Node>();
node1->next = node2;
node2->parent = node1; // Weak reference prevents cycle
// Access weak_ptr
if (auto parent = node2->parent.lock()) {
// parent is valid shared_ptr
}
}
// Custom deleter for resources
class Socket {
public:
static void close(int* fd) {
if (fd && *fd >= 0) {
::close(*fd);
delete fd;
}
}
};
auto createSocket() {
int fd = socket(AF_INET, SOCK_STREAM, 0);
return std::unique_ptr<int, decltype(&Socket::close)>(
new int(fd),
&Socket::close
);
}
// make_unique/make_shared best practices
void bestPractices() {
// Good: Exception safe, single allocation
auto ptr = std::make_shared<Widget>();
// Bad: Two allocations, not exception safe
std::shared_ptr<Widget> ptr2(new Widget());
// For arrays
auto arr = std::make_unique<int[]>(10);
}
// Move semantics (default)
fn move_example() {
let s1 = String::from("hello");
let s2 = s1; // s1 is MOVED, no longer valid
// println!("{}", s1); // Compile error!
println!("{}", s2);
}
// Borrowing (references)
fn borrow_example() {
let s = String::from("hello");
// Immutable borrow (multiple allowed)
let len = calculate_length(&s);
println!("{} has length {}", s, len);
// Mutable borrow (only one allowed)
let mut s = String::from("hello");
change(&mut s);
}
fn calculate_length(s: &String) -> usize {
s.len()
} // s goes out of scope, but doesn't drop since borrowed
fn change(s: &mut String) {
s.push_str(", world");
}
// Lifetimes: Compiler tracks reference validity
fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() { x } else { y }
}
// Struct with references needs lifetime annotation
struct ImportantExcerpt<'a> {
part: &'a str,
}
impl<'a> ImportantExcerpt<'a> {
fn level(&self) -> i32 {
3
}
// Lifetime elision: compiler infers 'a for &self
fn announce_and_return_part(&self, announcement: &str) -> &str {
println!("Attention: {}", announcement);
self.part
}
}
// Interior mutability
use std::cell::{Cell, RefCell};
use std::rc::Rc;
struct Stats {
count: Cell<i32>, // Copy types
data: RefCell<Vec<String>>, // Non-Copy types
}
impl Stats {
fn increment(&self) {
self.count.set(self.count.get() + 1);
}
fn add_data(&self, item: String) {
self.data.borrow_mut().push(item);
}
}
// Rc for shared ownership (single-threaded)
fn rc_example() {
let data = Rc::new(vec![1, 2, 3]);
let data2 = Rc::clone(&data); // Increment reference count
println!("Count: {}", Rc::strong_count(&data)); // 2
}
// Arc for shared ownership (thread-safe)
use std::sync::Arc;
use std::thread;
fn arc_example() {
let data = Arc::new(vec![1, 2, 3]);
let handles: Vec<_> = (0..3)
.map(|_| {
let data = Arc::clone(&data);
thread::spawn(move || {
println!("{:?}", data);
})
})
.collect();
for handle in handles {
handle.join().unwrap();
}
}
// C doesn't have RAII, but we can use patterns
#include <stdlib.h>
#include <stdio.h>
// Pattern: goto cleanup
int process_file(const char* path) {
FILE* file = NULL;
char* buffer = NULL;
int result = -1;
file = fopen(path, "r");
if (!file) {
goto cleanup;
}
buffer = malloc(1024);
if (!buffer) {
goto cleanup;
}
// Process file...
result = 0;
cleanup:
if (buffer) free(buffer);
if (file) fclose(file);
return result;
}
// Pattern: Opaque pointer with create/destroy
typedef struct Context Context;
Context* context_create(void);
void context_destroy(Context* ctx);
int context_process(Context* ctx, const char* data);
// Implementation
struct Context {
int* data;
size_t size;
FILE* log;
};
Context* context_create(void) {
Context* ctx = calloc(1, sizeof(Context));
if (!ctx) return NULL;
ctx->data = malloc(100 * sizeof(int));
if (!ctx->data) {
free(ctx);
return NULL;
}
ctx->log = fopen("log.txt", "w");
if (!ctx->log) {
free(ctx->data);
free(ctx);
return NULL;
}
return ctx;
}
void context_destroy(Context* ctx) {
if (ctx) {
if (ctx->log) fclose(ctx->log);
if (ctx->data) free(ctx->data);
free(ctx);
}
}
// Pattern: Cleanup attribute (GCC/Clang extension)
#define AUTO_FREE __attribute__((cleanup(auto_free_func)))
void auto_free_func(void** ptr) {
free(*ptr);
}
void auto_free_example(void) {
AUTO_FREE char* buffer = malloc(1024);
// buffer automatically freed at end of scope
}
// C++: Use containers instead of raw arrays
#include <vector>
#include <array>
#include <span>
void safe_array_access() {
std::vector<int> vec = {1, 2, 3, 4, 5};
// Safe: throws std::out_of_range
try {
int val = vec.at(10);
} catch (const std::out_of_range& e) {
// Handle error
}
// Unsafe but faster (no bounds check)
int val = vec[2];
// Modern C++20: std::span for array views
std::span<int> view(vec);
// Iterators are bounds-safe
for (int& x : view) {
x *= 2;
}
}
// Fixed-size arrays
void fixed_array() {
std::array<int, 5> arr = {1, 2, 3, 4, 5};
// Compile-time size known
static_assert(arr.size() == 5);
// Safe access
int val = arr.at(2);
}
// Rust: Bounds checking by default
fn rust_bounds_checking() {
let vec = vec![1, 2, 3, 4, 5];
// Runtime bounds check (panics if out of bounds)
let val = vec[2];
// Explicit option (no panic)
match vec.get(10) {
Some(val) => println!("Got {}", val),
None => println!("Index out of bounds"),
}
// Iterators (no bounds checking needed)
for val in &vec {
println!("{}", val);
}
// Slices are bounds-checked
let slice = &vec[1..3]; // [2, 3]
}
// C++: Thread-safe shared state
#include <mutex>
#include <shared_mutex>
#include <atomic>
class ThreadSafeCounter {
public:
void increment() {
// Atomic operations
count_.fetch_add(1, std::memory_order_relaxed);
}
int get() const {
return count_.load(std::memory_order_relaxed);
}
private:
std::atomic<int> count_{0};
};
class ThreadSafeMap {
public:
void write(const std::string& key, int value) {
std::unique_lock lock(mutex_);
data_[key] = value;
}
std::optional<int> read(const std::string& key) {
std::shared_lock lock(mutex_);
auto it = data_.find(key);
if (it != data_.end()) {
return it->second;
}
return std::nullopt;
}
private:
mutable std::shared_mutex mutex_;
std::map<std::string, int> data_;
};
// Rust: Data race prevention at compile time
use std::sync::{Arc, Mutex, RwLock};
use std::sync::atomic::{AtomicI32, Ordering};
use std::thread;
// Atomic for simple types
fn atomic_example() {
let counter = Arc::new(AtomicI32::new(0));
let handles: Vec<_> = (0..10)
.map(|_| {
let counter = Arc::clone(&counter);
thread::spawn(move || {
counter.fetch_add(1, Ordering::SeqCst);
})
})
.collect();
for handle in handles {
handle.join().unwrap();
}
println!("Counter: {}", counter.load(Ordering::SeqCst));
}
// Mutex for complex types
fn mutex_example() {
let data = Arc::new(Mutex::new(vec![]));
let handles: Vec<_> = (0..10)
.map(|i| {
let data = Arc::clone(&data);
thread::spawn(move || {
let mut vec = data.lock().unwrap();
vec.push(i);
})
})
.collect();
for handle in handles {
handle.join().unwrap();
}
}
// RwLock for read-heavy workloads
fn rwlock_example() {
let data = Arc::new(RwLock::new(HashMap::new()));
// Multiple readers OK
let read_guard = data.read().unwrap();
// Writer blocks readers
let write_guard = data.write().unwrap();
}
unsafe carelessly - In Rust, minimize it# AddressSanitizer (Clang/GCC)
clang++ -fsanitize=address -g source.cpp
# Valgrind
valgrind --leak-check=full ./program
# Rust Miri (undefined behavior detector)
cargo +nightly miri run
# ThreadSanitizer
clang++ -fsanitize=thread -g source.cpp